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1 Context & motivation

Artificial neural networks have demonstrated puzzling efficacy in a wide range of seemingly
very difficult classification tasks, despite little theorical guarantees to back these sucesses. In
particular, simple architectures trained only with a basic gradient descent and no explicit
regularization reach impressive prediction accuracies, even on non-convex problems, and in
regimes where the number of parameters of the model far exceeds the number of available
samples (also known as “over-parameterized” regime).

1.1 Implicit bias and reparameterizations

The main idea to explain the quality of the obtained predictor in the over-parameterized
regime is to describe not the growing number of parameters and their evolution, but rather
the prediction function that is learned by the network. If the prediction function converges
over time to a well-behaved limit predictor, then the quality of the network’s predictions can
be explained by the regularities of the limit predictor. This is known as the “implicit bias” of
the algorithm, for it does not appear explicitely as a regularization term in the objective. On
the contrary, it is a bias naturally enforced by the choice of gradient descent as a learning
algorithm. Gradient descent does not converge to any minimizer of the objective, but rather
to a very specific and possibly very well-behaved one. Using this approach, [Chizat and
Bach, 2020] show that two-layer networks trained with gradient descent on a logistic loss
(a.k.a. cross-entropy) learn a form of max-margin classifier of the data. The analysis is not
quantitative, but the limit predictor exhibits interesting properties that guarantee strong
generalization bounds, for instance in the presence of low-dimensional structure in the data,
the maximal margin does not depend on the ambient dimension.

In the setting of linear networks (i.e. without non-linearities) for the squared loss, [Wood-
worth et al., 2020] show that the implicit bias depends heavily on the parameterization and
choice of initialization. In particular, the linear predictor β 7→ Xβ will learn the interpolator
minimizing the ℓ2-difference to initialization if gradient descent is performed on the parameters
β, but will learn an interpolator minimizing an ℓ1-like disparity to initialization if the gradient
descent is performed on the reparameterization w satisfying w ⊙ w = β. The latter option,
akin to a two-layer linear network, induces an implicit bias that promotes sparsity of the
linear predictor learned.

1.2 Choice of focus for this internship

The goal of this internship was to extend these results on the implicit bias of two-layer networks
to make them quantitative, ideally with convergence speed guarantees that accurately describe
the behavior of networks in settings similar to the widespread use of neural networks.

From the max-margin convergence analysis, we retain the continuous gradient flow point
of view, and the separation of the first layer weights into a direction (on the sphere) and
a magnitude. [Chizat and Bach, 2020] showed that with the logistic loss, if the directions
converge, then they must converge to the max-margin directions, however there is no guarantee
that they will converge. It therefore seems unlikely that we could obtain guarantees on
convergence speed on the directions. To simplify, we consider the directions fixed during
training. This fixed-direction choice is questionnable, but the results could still be interesting.
Because of the logistic loss, the magnitudes of weights diverged to infinity over time. In
contrast, the squared loss is coercive and will have weights that do not diverge over time.
For these reasons, we choose to focus on two-layer networks with fixed directions for the first
layer, trained by gradient flow on a squared loss objective.
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2 Mirror descent for over-parameterized least-squares

Following the approach of [Woodworth et al., 2020], we will show that it is possible to reduce
the setting we are interested in to linear predictor following a mirror flow. We start by
analyzing this setting in depth, and show the reduction to this form in the following section.

We consider an over-parameterized linear regression problem with the square loss. Given
a design matrix X ∈ R

n×d with rank(X) = n < d and a response vector y ∈ R
n, the objective

function F : Rd → R is the square loss

F (β) :=
1

2
‖Xβ − y‖22.

Let φ : D → R be a convex function of Legendre type1 defined on a nonempty convex open
set D ⊂ R

d such that ∇φ(D) = R
d2. We study the continuous time mirror descent dynamics

starting from β0 ∈ D, which we will refer to as the mirror flow. It is the unique solution
β : R+ → D to the following system







β(0) = β0,

d

dt
∇φ(β(t)) = −∇F (β(t)).

See Lemma (A.1) in appendix for proof of existence and uniqueness of this solution.

2.1 Implicit bias of the mirror flow

For clarity in the statement of the following two theorems, we distinguish two types of
minimizers of the objective.

Definition 2.1. (Following Bauschke and Borwein [1997, Sec. 3.3])

arg infD F =
{

β̄ ∈ D̄ | ∀β ∈ D, F (β̄) ≤ F (β)
}

arg minD F = (arg infD F ) ∩D

The implicit bias of this dynamics was characterized in [Gunasekar et al., 2018, Thm. 1]
in terms of the Bregman divergence Dφ(β1, β0) := φ(β1) − φ(β0) − 〈∇φ(β0), β1 − β0〉. Here
we state an improved version of their result where we remove a convergence assumption3.

Theorem 2.2 (Implicit bias, qualitative). Assume that arg minD F 6= ∅. Then the mirror
flow converges to the unique Bregman projection of β0 onto the set of minimizers of F i.e.
limt→∞ β(t) = β∗ where

{β∗} = arg min {Dφ(β, β0) : β ∈ arg minD F} . (1)

The existence and uniqueness of solutions to the problem in Eq. (1) under our assumptions
is shown in [Bauschke and Borwein, 1997, Theorem 3.12]. The unique solution β∗ ∈ D is
characterized by

{

β∗ ∈ arg minD F

∇φ(β∗) −∇φ(β0) ∈ Im(X⊤)
1That is φ is strictly convex, differentiable and limβ→∂D ‖∇φ(β)‖ = +∞, see [Rockafellar, 1970, Sec. 26]

or [Bauschke and Borwein, 1997, Sec. 2].
2Needed for coercivity of Dφ(β, ·) [Bauschke and Borwein, 1997, Cor. 3.11].
3In Gunasekar et al. [2018], it is assumed that β(t) admits a limit β∗, and that Xβ∗ = y.
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Proof. We first start by exploiting the classical mirror descent argument, see e.g. [Bubeck,
2015, Chap. 4]. Let β̄ ∈ arg minD F ⊆ D. By the definition of Dφ and convexity of F we
have for t > 0,

d

dt
Dφ

(

β̄, β(t)
)

=
〈

∇F (β(t)), β̄ − β(t)
〉

≤ −
(

F (β(t)) − F
(

β̄
))

≤ 0. (2)

As we have assumed that ∇φ(D) = R
d, the sublevel sets of β 7→ Dφ(β̄, β) are com-

pact [Bauschke and Borwein, 1997, Cor. 3.11] so there exists a limit point β∗ ∈ D̄. Integrating
Inequality (2) and using that t 7→ F (β(t)) is decreasing and Dφ(β̄, β(t)) ≥ 0, it follows for
t > 0,

F (β(t)) − F (β̄) ≤ 1

t

∫ t

0

(

F (β(s)) − F (β̄)
)

ds ≤ 1

t
Dφ

(

β̄, β(0)
)

. (3)

As a consequence, any limit point β∗ must satisfy F (β∗) = F (β̄).
The second part of the proof now follows Gunasekar et al.’s argument. Since ∇F (β) ∈

Im(X⊤) = ker(X)⊥ it follows that ∇φ(β(t)) − ∇φ(β(0)) = −
∫ t
0 ∇F (β(s))ds ∈ Im(X⊤).

Given the optimality conditions of Equation (2.1) and since ∇φ is continuous on D it only
remains to show that any limit point β∗ /∈ ∂D.

Indeed, if β(t) → β∗ ∈ ∂D, then in particular ‖∇φ(β(t))‖ → ∞ by hypothesis, thus
Dφ(β̄, β(t)) = Dφ∗(∇φ(β(t)),∇φ(β̄)) → ∞ by coercivity (by [Bauschke and Borwein, 1997,
Fact. 2.11], since φ Legendre implies φ∗ closed convex proper, and β̄ ∈ arg minD F ⊆ D),
which contradicts the decrease proven in Equation (2). Hence β∗ /∈ ∂D and F (β∗) = F (β̄),
therefore β∗ ∈ arg minD F . Since g : t 7→ Dφ(β∗, β(t)) is decreasing and β∗ is a limit point of
β, g must tend to zero, and so it follows that β(t) −→

t→∞
β∗.

At the expense of a slightly more intricate proof, the assumption that the minimum
in attained inside the domain can be removed in some cases. In the event that no such
minimum exists in the domain, i.e. arg minD F = ∅, the minimizers of F are all on the border
arg infD F ⊆ ∂D, and the mirror flow will converge to a limit point on the border ∂D as well.

Theorem 2.3 (Implicit bias, qualitative, extended). If the mirror flow potential admits a
continuous extension φ : D̄ → R, then the mirror flow β : R+ → D converges to the unique
Bregman projection of β0 onto the set of minimizers of F i.e. limt→∞ β(t) = β∗ where

{β∗} = arg min
{

Dφ(β, β0) : β ∈ arg infD F ⊆ D̄
}

. (4)

Moreover, (arg minD F 6= ∅) ⇔ (β∗ ∈ arg minD F ⊆ D).

Proof. The Bregman divergence is extended continuously to Dφ : D̄ → R+. The existence
and uniqueness of solutions again follows from [Bauschke and Borwein, 1997, Theorem 3.12].
The classical mirror descent argument, see e.g. [Bubeck, 2015, Chap. 4], extends naturally.
Let β̄ ∈ arg infD F ⊆ D̄. By definition of Dφ and convexity of F , we have for t > 0

d

dt
Dφ

(

β̄, β(t)
)

=
〈

∇F (β(t)), β̄ − β(t)
〉

≤ −
(

F (β(t)) − F
(

β̄
))

≤ 0

Since [Bauschke and Borwein, 1997, Cor. 3.11] guarantee compactness of the sublevel sets
β 7→ Dφ(β̄, β) only if β̄ ∈ D, instead we note that t 7→ F (β(t)) is also decreasing since
d
dtF (β) = ∇F (β) · d

dtβ = −∇F (β) · ∇2φ(β)
−1 · ∇F (β) ≤ 0, and F has compact sublevel

sets, so there exists a limit point β∗ ∈ D̄. Integrating the previous inequality and using this
decrease as previously, together with Dφ(β̄, β(t)) ≥ 0, it follows for t > 0,

F (β(t)) − F (β̄) ≤ 1

t

∫ t

0

(

F (β(s)) − F (β̄)
)

ds ≤ 1

t
Dφ

(

β̄, β(0)
)

. (5)
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As a consequence, any limit point β∗ must satisfy F (β∗) = F (β̄), thus β∗ ∈ arg infD F , and as
previously β(t) → β∗. Moreover, it holds Xβ∗ = Xβ̄, otherwise 1

2(β∗ + β̄) ∈ D̄ would achieve
strictly lower loss by strict convexity of the ℓ2 loss u 7→ ‖u − y‖22. It then only remains to
show that Dφ(β∗, β0) ≤ Dφ(β̄, β0). For this purpose, let f : t 7→ Dφ(β∗, β(t)) −Dφ(β̄, β(t)).

Observe that df
dt (t) = 〈∇F (β(t)), β∗ − β̄〉 = (Xβ(t) − y)T (Xβ∗ − Xβ̄) = 0. Hence f(0) =

limt→∞ f(t) ≤ 0, which concludes the proof of the first claim.
For the second claim, if arg minD F 6= ∅, then let β̄ ∈ arg minD F , and we obtain as

previously that Dφ(β̄, β(t)) → ∞ if β∗ ∈ ∂D, thus β∗ ∈ D because Dφ(β̄, β(t)) is decreasing
and finite at t = 0. The other implication is immediate.

2.2 Local convergence speed

In the next theorem, we give assumptions under which convergence to a minimizer is
guaranteed and also gives an asymptotic convergence speed. This control will be obtained by
showing that the system satisfies a  Lojasiewicz condition, then integrating with respect to
time to bound the remaining path length.

Lemma 2.4 (Least-squares-induced Bregman divergence is Mahalanobis distance). The
least-squares objective F : β 7→ 1

2‖Xβ − y‖22 induces the symmetric Bregman divergence
DF : (β0, β1) 7→ 1

2‖Xβ0−Xβ1‖22, also known as Mahalanobis squared distance4 ‖β0−β1‖2X⊤X

Proof. Since the objective F is a convex function, it induces a well-defined Bregman divergence
DF : (β0, β1) 7→ F (β0) − F (β1) − 〈∇F (β1), β0 − β1〉. Moreover, since F (β) = 1

2‖Xβ − y‖22,
it has gradient ∇F (β) = X⊤(Xβ − y). Thus for any (β0, β1) ∈ D2, we can rewrite the
divergence using bilinearity of the inner product in the following way

DF (β0, β1) =
1

2
‖Xβ0 − y‖22 −

1

2
‖Xβ1 − y‖22 − (Xβ1 − y)TX(β0 − β1)

=
1

2
‖Xβ0 − y‖22 −

1

2
‖Xβ1 − y‖22 − (Xβ1 − y)T (Xβ0 − y) + (Xβ1 − y)T (Xβ1 − y)

=
1

2

(

‖Xβ0 − y‖22 + ‖Xβ1 − y‖22 − 2(Xβ0 − y)T (Xβ1 − y)
)

=
1

2
‖Xβ0 −Xβ1‖22

Lemma 2.5 (Convergence under θ- Lojasiewicz condition). Assume that there exists a radius
r > 0, a multiplicative constant κ > 0 and an exponent θ ≥ 0 such that on the set Bβ∗(r) :=

{β ∈ D : Dφ(β∗, β) ≤ r, ∇φ(β) ∈ ∇φ(β∗) + Im(X⊤)}, it holds DF (β∗, β) ≥ κ
2Dφ(β∗, β)θ.

Then T0 = inf{t ∈ R+|Dφ(β∗, β(t)) ≤ r} < ∞. Moreover for all t ≥ T0, the following

differential inequality is satisfied: d
dtDφ(β∗, β(t)) ≤ −κDφ(β∗, β(t))θ.

The κ
2 constant instead of just κ in the  Lojasiewicz condition is due to the symmetry of

the Bregman divergence DF . Introducing the 1
2 scaling only slightly complicates the proof

and yields tighter bounds in the following sections.

Proof. By Theorem (2.2), β(t) → β∗, therefore by continuity of the Bregman divergence,
Dφ(β∗, β(t)) → Dφ(β∗, β∗) = 0. Hence, define T0 = inf{t ∈ R+ : Dφ(β∗, β(t)) ≤ r}. Let us
show now that the set Bβ∗(r) is stable by the training dynamics. As previously, since ∇F (β) ∈
Im(X⊤) for all β, it holds at all times ∇φ(β(t)) − ∇φ(β∗) =

∫∞
t ∇F (β(s))ds ∈ Im(X⊤).

Moreover, Dφ(β∗, β(T0)) ≤ r, and by Inequality (2), for all t ≥ T0, it holds Dφ(β∗, β(t)) ≤
4It is not always a distance, in the sense that it does not separate points if X does not have full rank
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Dφ(β∗, β(T0)) ≤ r, thus for all t ≥ T0, β(t) ∈ Bβ∗(r). Then, by definition of the Bregman
divergence, and symmetry of the previously computed divergence DF , 〈∇F (β∗)−∇F (β), β∗−
β〉 = DF (β∗, β) +DF (β, β∗) = 2DF (β∗, β). However, since β∗ is a minimum of F over the
convex set D, it satisfies the optimality condition ∀β ∈ D, 〈∇F (β∗), β − β∗〉 ≥ 0 [Rockafellar,
1970, Theorem 25.6]. Therefore, for any β ∈ D, it holds 〈−∇F (β), β∗ − β〉 ≥ 2DF (β∗, β).
The result follows from the derivation argument of Inequality (2), the symmetry, and the
hypothesis.

d

dt
Dφ(β∗, β(t)) = 〈∇F (β(t)), β∗ − β(t)〉 ≤ −2DF (β∗, β(t)) ≤ −κDφ(β∗, β(t))θ (6)

2.2.1 Local linear convergence speed

Theorem 2.6 (Implicit bias, local linear convergence). Assume that there exists two norms
‖ · ‖ on D and ‖ · ‖∗ on R

n, and a radius r > 0 such that β∗ ∈ D, and on the set Bβ∗(r) :=
{β ∈ D : Dφ(β∗, β) ≤ r, ∇φ(β) ∈ ∇φ(β∗) + Im(X⊤)}, it holds ∇φ : (D, ‖ · ‖) → (Rn, ‖ · ‖∗)
is Lφ-Lipschitz continuous. Then T0 = inf{t ∈ R+|Dφ(β∗, β(t)) ≤ r} <∞. Moreover, for all
t ≥ T0, it holds

Dφ(β∗, β(t)) ≤ Dφ(β∗, β(T0)) exp

(

− 1

Lφ ‖X⊤†‖2op
(t− T0)

)

Where
∥

∥X⊤†
∥

∥

op
= sup‖v‖∗≤1

∥

∥

∥(X⊤)
†
v
∥

∥

∥

2
is the operator norm of the pseudo-inverse of X⊤.

While this shows that Lφ-Lipschitz continuity of ∇φ is sufficient to get linear convergence,
this bound risks becoming loose when Lφ grows. If this happens only far from the optimum,
then decreasing the radius r will grant a local linear convergence bound with a more reasonable
constant. If even near the optimum Lφ is too large, we show in the next section a variation
of this technique that can give a more interesting bound.

Proof. Let κ1 =
(

Lφ

∥

∥X⊤†
∥

∥

2

op

)−1
. We will start by showing that the system satisfies a

1- Lojasiewicz condition DF (β∗, β) ≥ κ1

2 Dφ(β∗, β) for all β ∈ Bβ∗(r). The claim shall then be
easily obtained by applying Lemma (2.5) and integrating with respect to time.

The Lφ-Lipschitz continuity implies that for β ∈ Bβ∗(r), it holds 〈∇φ(β) −∇φ(β∗), β −
β∗〉 ≤ L−1

φ ‖∇φ(β)−∇φ(β∗)‖2∗ by co-coercivity of the gradient. Let β ∈ Bβ∗(r). By definition

of Bβ∗(r), there exists u ∈ R
n such that ∇φ(β) − ∇φ(β∗) = X⊤u. Then, leveraging the

Cauchy-Schwarz inequality (a), projection smoothness (b) and potential smoothness (c), we
obtain

〈∇φ(β) −∇φ(β∗), β − β∗〉2 = 〈X⊤u, β − β∗〉2 = 〈Xβ −Xβ∗, u〉2

≤ ‖Xβ −Xβ∗‖22‖u‖22 (a)

≤
∥

∥

∥X⊤†
∥

∥

∥

2

op
‖Xβ −Xβ∗‖22‖X⊤u‖2∗ (b)

≤ Lφ

∥

∥

∥
X⊤†

∥

∥

∥

2

op
‖Xβ −Xβ∗‖22〈∇φ(β) −∇φ(β∗), β − β∗〉 (c)

Since by convexity 〈∇φ(β) −∇φ(β∗), β − β∗〉 ≥ 0 [Rockafellar, 1970, Sec. 24], this implies

〈∇φ(β) −∇φ(β∗), β − β∗〉 ≤ Lφ

∥

∥

∥X⊤†
∥

∥

∥

2

op
‖Xβ −Xβ∗‖22 =

2

κ1
DF (β∗, β)
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By definition of the Bregman divergence Dφ(β∗, β) +Dφ(β, β∗) = 〈∇φ(β) −∇φ(β∗), β − β∗〉.
By positivity of the Bregman divergence Dφ(β, β∗) ≥ 0, this implies the previously announced
1- Lojasiewicz condition DF (β∗, β) ≥ κ1

2 Dφ(β∗, β).
Applying Lemma (2.5), it follows that T0 = inf{t ∈ R+|Dφ(β∗, β(t)) ≤ r} <∞. Moreover,

for all t ≥ T0, d
dtDφ(β∗, β(t)) = −κ1Dφ(β∗, β(t)). Integrating with respect to time yields the

result Dφ(β∗, β(t)) ≤ Dφ(β∗, β(T0)) exp(−κ1(t− T0)) by Grönwall’s lemma.

2.2.2 Local sublinear convergence speed

The local linear convergence speed was obtained by leveraging a 1- Lojasiewicz condition
DF (β∗, β) ≥ κ1

2 Dφ(β∗, β), obtained by a Lipschitz-smoothness assumption on ∇φ. Since
it was already established that F (β(t)) − F (β∗) ≤ C0/t and κ1DF (β∗, β) ≤ F (β) − F (β∗),
this immediately gives the sublinear convergence speed Dφ(β∗, β(t)) ≤ C0/(κ1t). However
the constant κ1 originates from a very strong 1- Lojasiewicz condition. In the event that
this forces a choice of κ1 too small to be informative, as will be the case in our application
below, it can be useful to resort to a proof of sublinear convergence under milder assumptions,
through a 2- Lojasiewicz condition, resulting in a possibly much better constant.

Theorem 2.7 (Implicit bias, sublinear convergence). Assume that there exists a norm ‖ · ‖∗
on R

n, and a radius r > 0 and a constant Cφ ≥ 0 such that β∗ ∈ D, and on the set Bβ∗(r) :=
{β ∈ D : Dφ(β∗, β) ≤ r, ∇φ(β) ∈ ∇φ(β∗) + Im(X⊤)}, it holds ‖∇φ(β) −∇φ(β∗)‖∗ ≤ Cφ.
Then T0 = inf{t ∈ R+|Dφ(β∗, β(t)) ≤ r} <∞. Moreover, for all t ≥ T0, it holds

Dφ(β∗, β(t)) ≤ 1

κ2(t− T0) + c

With κ2 =
(

C2
φ

∥

∥X⊤†
∥

∥

2

op

)−1
and c = Dφ(β∗, β(T0))

−1, where
∥

∥X⊤†
∥

∥

op
= sup‖v‖∗≤1

∥

∥

∥
(X⊤)

†
v
∥

∥

∥

2

is the operator norm of the pseudo-inverse of X⊤.

Proof. Let κ2 =
(

C2
φ

∥

∥X⊤†
∥

∥

2

op

)−1
. The idea for the proof is the same as the previous, we start

by showing a 2- Lojasiewicz condition DF (β∗, β) ≥ κ2

2 Dφ(β∗, β)2, then apply Lemma (2.5)
and integrate the obtained inequality.

Let β ∈ Bβ∗(r). By definition of Bβ∗(r), there exists u ∈ R
n such that ∇φ(β) −

∇φ(β∗) = X⊤u. Then leveraging as previously the Cauchy-Schwartz inequality (a), projection
smoothness (b), and dual boundedness (c), we obtain

〈∇φ(β) −∇φ(β∗), β − β∗〉2 = 〈X⊤u, β − β∗〉2 = 〈Xβ −Xβ∗, u〉2

≤ ‖Xβ −Xβ∗‖22‖u‖22 (a)

≤
∥

∥

∥
X⊤†

∥

∥

∥

2

op
‖Xβ −Xβ∗‖22‖X⊤u‖2∗ (b)

=
∥

∥

∥
X⊤†

∥

∥

∥

2

op
‖Xβ −Xβ∗‖22‖∇φ(β) −∇φ(β∗)‖2∗

≤ C2
φ

∥

∥

∥
X⊤†

∥

∥

∥

2

op
‖Xβ −Xβ∗‖22 (c)

By definition of the Bregman divergence Dφ(β∗, β) +Dφ(β, β∗) = 〈∇φ(β) −∇φ(β∗), β − β∗〉.
Hence by positivity of the Bregman divergence Dφ(β, β∗) ≥ 0, the previous inequality implies

Dφ(β∗, β)2 ≤ 〈∇φ(β) −∇φ(β∗), β − β∗〉2 ≤ C2
φ

∥

∥

∥
X⊤†

∥

∥

∥

2

op
‖Xβ −Xβ∗‖22 =

2

κ2
DF (β∗, β)
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Thus the previously announced 2- Lojasiewicz condition DF (β∗, β) ≥ κ2

2 Dφ(β∗, β)2. Applying
Lemma (2.5), it follows that T0 = inf{t ∈ R+|Dφ(β∗, β(t)) ≤ r} < ∞. Moreover, for all
t ≥ T0, d

dtDφ(β∗, β(t)) = −κ2Dφ(β∗, β(t))2. Integrating with respect to time yields the result

Dφ(β∗, β(t)) ≤ (κ2(t− T0) +Dφ(β∗, β(T0))
−1)

−1
.

3 Application: two-layer network for least-squares

We consider a regression problem with training set (xi, y
∗
i )i∈[n] of n pairs of observations

with xi ∈ R
k and y∗i ∈ R. The prediction functions we are interested in are two-layer neural

networks with ReLU non-linearities (x 7→ (x)+ = max(0, x)) with m ∈ N \ {0} hidden

nodes. We assume that the directions of the first layer (θi)i∈[n] are fixed to θi ∈ S
k−1 =

{u ∈ R
k | ‖u‖2 = 1}. As such, the predictions of a network with trainable parameters

(a, b) ∈ R
m × R

m is obtained with N θ : Rm × R
m → R

n defined as

N θ
i : (a, b) 7→

∑

j∈[m]

bj
(

〈ajθj , xi〉
)

+

We use L : Rn → R to denote the square loss y 7→ 1
2‖y − y∗‖22, and consider minimization

using a gradient flow on the trainable parameters w : R+ → R
2m.

dw

dt
(t) = −∇(L ◦N θ)(w(t))

Under the assumption that for all i ∈ [m], ai(0)2 ≥ bi(0)2, this gradient flow is well
defined at all times, see Lemma (A.2) in appendix.

3.1 Reparameterization to mirror flow

We start by showing that there exists a reparameterization ψ : Rm × R
m → D with D ⊆ R

d

non-empty open convex, a Legendre potential φ : D → R with ∇φ(D) = R
d, and a design

matrix X ∈ R
n×d, such that N θ(a, b) = X · ψ(a, b), and ψ(a, b) follows a mirror flow with

potential φ. From there, applying the results of the previous section will yield a caracterization
of the limit point obtained by gradient flow, together with bounds on the convergence speed.

Definition 3.1. For (α, z) ∈ (R+ × R) \ {(0, 0)}, define Dα,z := R if α 6= 0, or D0,z := R
∗
+

if z > 0, or D0,z := R
∗
− if z < 0. The one-dimensional α-hypentropy compatible with z is the

function φα : Dα,z → R, defined for α 6= 0 as

φα : x 7→ x arcsinh
(x

α

)

−
√

x2 + α2 + α

And extended to α = 0 as
φ0 : x 7→ |x| log(|x|) − |x| + 1

Definition 3.2. For (α, z) ∈ R
k
+ ×R

k such that ∀i ∈ [k], (αi, zi) 6= (0, 0), define by cartesian
product the domain Dα,z :=

∏

i∈[k]Dαi,zi ⊆ R
k. The k-dimensional α-hypentropy compatible

with z is the function Φα : Dα,z → R defined as Φα : x 7→∑

i∈[k] φαi
(xi).

Although perhaps not directly obvious from the definition, the multi-dimensional hy-
pentropy of Definition (3.2) can take crucially different shapes depending on the parameter
α ∈ R

k
+. Some examples in dimension one and two are depicted in Figure (1). For α strictly

positive, φα(0) = 0 and ∇φα(0) = 0. Therefore, in the setting of Theorem (2.2), if β0 = 0,
then the limit point β∗ is the minimizer of DΦα(·, β0) = Φα(·) among minimizers of the

8



objective. The classifier learned by gradient descent and its properties will vary greatly
depending on this parameter. As observed by [Woodworth et al., 2020, p6], a large such
parameter will yield an ℓ2-like implicit regularization, while a choice closer to zero will behave
more like an ℓ1-like regularization.
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Figure 1: Comparison of 1D hypentropies (left), and level sets of 2D hypentropies (right)

We now show that the so-defined hypentropy is a valid choice of potential for mirror flow.

Lemma 3.3. For any (α, z) ∈ R
k
+ × R

k such that ∀i ∈ [k], (αi, zi) 6= (0, 0), the domain
Dα,z ⊆ R

k is a convex open subset of Rk containing z, and Φα : Dα,z → R the α-hypentropy
compatible with z is of Legendre type, and satisfies ∇Φα(Dα,z) = R

k.

Proof. For all i ∈ [k], by hypothesis (αi, zi) 6= (0, 0), thus Dαi,zi ∈ {R,R∗
+,R

∗
−}, hence Dαi,zi

is a convex open subset of R. Moreover zi ∈ Dαi,zi by definition. Then Dα,z is a convex
set as a cartesian product of convex sets by Rockafellar [1970, Thm. 3.5], and z ∈ Dα,z.
For every i ∈ [k], the one-dimensional αi-hypentropy is twice differentiable on Dαi,zi and
d2φαi

dx2 (x) = (x2 + α2
i )

−1/2
> 0 (see Lemma (A.3) in appendix). Thus all φαi

: Dαi,zi → R

are strictly convex on their domain. Furthermore, they are all essentially smooth, since
∂Dαi,zi = ∅ if αi 6= 0, ∂D0,zi = {0} and 〈∇φ0(tx), x〉 = |x| log(t|x|) → −∞ when t → 0 for
any x ∈ D0,zi (see [Bauschke and Borwein, 1997, Def 2.1]). Thus all φi are Legendre (see
[Bauschke and Borwein, 1997, Def 2.8]). Then Φα :

∏

i∈[k]Dαi,zi → R is Legendre, for it is
strictly convex differentiable by separability, and 〈∇Φα(x + t(y − x)), y − x〉 → −∞ when
t→ 0 for any (x, y) ∈ ∂Dα,z ×Dα,z by separating each dimension and applying the previous
argument. For the last claim, observe that since each φαi

: Dαi,zi → R is Legendre, it holds
∇φαi

(Dαi,zi) = R. Thus by separability, ∇Φα(Dα,z) = (∇φαi,zi(Dαi,zi))i∈[k] = R
k.

Theorem 3.4. Let (xi, y
∗
i )i∈[n] ∈ (Rd × R)

n
, and θj ∈ S

d−1 for j ∈ [m]. Let (a0, b0) ∈
(R∗

+)m × R
m be such that r = 1

2

(

a20 − b20
)

∈ R
m
+ . Let (a, b) : R+ → R

m × R
m be the

weights of the two-layer fixed-direction network trained by gradient flow on the least-squares
objective with data (xi, y

∗
i )i∈[n] and initialization (a0, b0). Then β : R+ → R

m, defined by

βj : t 7→ aj(t)bj(t) follows a mirror flow with potential 1
2Φr, where Φr is the r-hypentropy

compatible with β(0), and objective β 7→ 1
2‖Xβ − y∗‖22, where Xi,j = (〈θj , xi〉)+. Moreover,

∀t ∈ R+, ∀x ∈ R
d, ∀j ∈ [m], bj(t)(〈aj(t)θj , x〉)+ = βj(t)(〈θj , x〉)+.

9



The idea for this proof is that since the objective depends only on the product ajbj and not
on aj and bj individually, then at all times and for all j ∈ [m], training by gradient flow will
preserve the quantity a2j − b2j . The pair (aj , bj) thus remains constrained on a hyperbole5, and
can be safely reparameterized to a single parameter βj . Similarly, the hypentropy potential
appears in [Woodworth et al., 2020, Theorem 1] because their objective depends only on
a difference of squares, therefore the product is conserved, and the change of coordinates
(a, b) 7→ (a2 − b2, ab) is identical. Their reparameterization is not recovered directy as a
particular case of this theorem, for it merges two nodes together, but it will be recovered as a
particular case of the following lemma which extends this theorem.

Proof. Let r : t 7→ 1
2

(

a(t)2 − b(t)2
)

. By Lemma (A.2), the condition 1
2

(

a20 − b20
)

∈ R
m
+

guarantees that the gradient flow is well defined, that r is constant, and that ∀t ∈ R+, ∀j ∈
[m], aj(t) ≥ 0. It follows that for any t ∈ R+, x ∈ R

d, and j ∈ [m], it holds bj(t)(〈aj(t)θj , x〉)+ =
bj(t)aj(t)(〈θj , x〉)+ = βj(t)(〈θj , x〉)+, where we let β : t 7→ (aj(t)bj(t))j∈[m]. This proves the

last claim of equivalence between the two-layer network in (a, b) and the linear model in β. It
remains to show that β follows a mirror flow for objective F : β 7→ 1

2‖Xβ − y∗‖22.
Let us show that β satisfies the differential equation d

dtβ = −
(

1
2∇2Φr(β)

)−1 · ∇F (β).
Using the definition of gradient flow for (a, b), then the chain rule with the intermediate
variable yi : t 7→∑

j∈[m] βj(t) (〈θj , xi〉)+, and definition of the objective F ,

dβj
dt

(t) =
daj
dt

(t) bj(t) + aj(t)
dbj
dt

(t)

= −∂L ◦N θ

∂aj

(

a(t), b(t)
)

bj(t) − aj(t)
∂L ◦N θ

∂bj

(

a(t), b(t)
)

= −
(

aj(t)
2 + bj(t)

2
)

∑

i∈[n]

(〈θj , xi〉)+
∂L

∂yi
(yi(t))

= −
(

aj(t)
2 + bj(t)

2
) [

∇F (β(t))
]

j

Using the identity (u+ v) =
√

4uv + (u− v)2, which holds for all (u, v) ∈ R
2
+, and since the

Hessian ∇2Φr is diagonal by separability of Φr, it follows

dβj
dt

(t) = −
(
√

4βj(t)
2 +

(

aj(t)
2 − bj(t)

2
)2
)

[

∇F (β(t))
]

j

= −
(

2

√

βj(t)
2 + rj2

)

[

∇F (β(t))
]

j

= −
[1

2
∇2Φr(β(t))

]

j,j

−1[

∇F (β(t))
]

j

= −
[

(

1

2
∇2Φr(β(t))

)−1

∇F (β(t))

]

j

Hence β satisfies the claimed differential equation d
dtβ = −

(

1
2∇2Φr(β)

)−1 · ∇F (β), which

by chain rule is equivalent to d
dt∇

(

1
2Φr

)

(β) = −∇F (β), thus β follows a mirror flow with
objective F and potential 1

2Φr, which concludes the proof.

5unless the difference of squares is null, in which case it is constrained to a open half-line
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Lemma 3.5 (reparameterization, merging identical directions). Let (xi, y
∗
i ) ∈ (Rd × R)

for i ∈ [n] be the training data, and θj ∈ S
d−1 for j ∈ [m] the fixed directions. Let

I : [m] → [p] be a surjective map such that ∀(i, j) ∈ [m]2, I(i) = I(j) ⇒ θi = θj. Let
(a0, b0) ∈ (R∗

+)m × R
m be such that (a20 − b20) ∈ R

m
+ . Let r ∈ R

p
+ defined for k ∈ [p] by r2k =

1
4

∑

i,j∈I−1(k)

(

[a0]i[a0]j − [b0]i[b0]j

)2
+
(

[a0]i[b0]j − [b0]i[a0]j

)2
. Let (a, b) : R+ → R

m × R
m

be the weights of the two-layer fixed-direction network trained by gradient flow on the least-
squares objective with data (xi, y

∗
i )i∈[n] and initialization (a0, b0). Then β : R+ → R

p defined

by βk : t 7→ ∑

j∈I−1(k) aj(t)bj(t) follows a mirror flow with potential 1
2Φr, where Φr is the

r-hypentropy compatible with β(0), and objective β 7→ 1
2‖Xβ−y∗‖22, for Xk,i = (〈θI−1(k), xi〉)+.

Moreover, ∀t ∈ R+, ∀x ∈ R
d, ∀k ∈ [p],

∑

j∈I−1(k) bj(t)(〈aj(t)θj , x〉)+ = βk(t)(〈θI−1(k), x〉)+.

Proof. We start by noting that X is well defined, despite the slight abuse of notation, by the
assumption on I, and that I = id : [m] → [m] the identity recovers the previous theorem. The
proof is identical, so we only show the change in the computation of the differential equation.

dβk
dt

= −
∑

j∈I−1(k)

(

aj(t)
2 + bj(t)

2
)

∑

i∈[n]

(〈θj , xi〉)+
∂L

∂yi
(yi(t))

= −
∑

j∈I−1(k)

(

aj(t)
2 + bj(t)

2
) [

∇F (β(t))
]

k

To shorten notations a little, for i ∈ [m] let qi : t 7→ ai(t)
2 + bi(t)

2, and αi : t 7→ ai(t)bi(t).
Let k ∈ [p] and perform summations over I−1(k) by default when ommitted, such that
βk =

∑

j αj . In this form, the previous equality can be written dβk

dt = −(
∑

j qj)[∇F (β)]k, and

the potential’s inverse hessian is
[

1
2∇2Φ(r)(β)

]−1

k,k
= 2

√

β2k + r2k. To show that β follows a

mirror flow with potential 1
2Φr, it is thus sufficient to show that

∑

j qj =
[

1
2∇2Φ(r)(β)

]−1

k,k
, or

equivalently (by positivity) that their squares are equal. Since (
∑

j qj)
2 − 4β2k = (

∑

j qj)
2 −

4(
∑

j αj)
2 =

∑

i,j qiqj − 4αiαj , it is sufficient to show that 4r2k =
∑

i,j qiqj − 4αiαj . By

simply expanding each term of both sums, qiqj − 4αiαj = (a2i + b2i )(a
2
j + b2j ) − 4aiajbibj =

(a2i a
2
j − 2aiajbibj + b2i b

2
j ) + (a2i b

2
j − 2aibjajbi + a2jb

2
i ) = (aiaj − bibj)

2 + (aibj − ajbi)
2, which

concludes the proof. We could also show as before that each term qiqj−4αiαj is constant.

3.2 Analysis of reparameterized mirror flow

In the event that the hypentropy parameter is sufficiently far from zero, a global linear
convergence rate of the Bregman divergence to the optimum can be guaranteed.

Lemma 3.6. Let X ∈ R
n×m be a design matrix of rank n, y ∈ R

n a response vector, β0 ∈ R
m

an initial point, and r ∈ R
m
+ such that infi ri > 0. If β : R+ → (Rm, ‖·‖2) follows a mirror

flow with objective β 7→ 1
2‖Xβ − y‖22 and potential 1

2Φr the r-hypentropy compatible with β0,
from β(0) = β0, then β(t) → β∗ = arg min{DΦr(β, β0) : β ∈ arg minF}. Moreover for all

t ∈ R+, it holds DΦr(β∗, β(t)) ≤ DΦr(β∗, β0)e
−κt, where κ = (infi ri)/

∥

∥X⊤†
∥

∥

2

op
.

Proof. Let R = infi∈[m] ri. Let us show that ∇Φr : (Rm, ‖·‖2) → (Rm, ‖·‖2) is (1/R)-Lipschitz.

sup
(x,y)∈Rm×Rm

‖∇Φr(x) −∇Φr(y)‖2
‖x− y‖2

≤ sup
x∈Rm

sup
i∈[m]

[

∇2Φr(x)
]

i,i
= sup

x∈Rm

sup
i∈[m]

√

1

x2 + r2i
≤ 1

R

The result follows by Theorem (2.6) for T0 = 0.
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Similarly if the limit β∗ is sufficiently far from zero, then a local linear convergence rate
would be obtained in the same manner by upper-bounding the highest eigenvalue of ∇2Φr

near β∗. However in the event that the optimum is sparse, and the hypentropy parameter r
is close to zero, then these bounds would quickly become uninformative since the constant
κ would tend to zero like (infi∈[m] ri). While it remains that F (β(t)) ≤ C0/t, we have no
such guarantee for the Bregman divergence, which merely satisfies Dφ(β∗, β(t)) ≤ C0/(κt)
for a vanishing κ. Since that sparsity-inducing regime appears to be interesting, we turn to a
2- Lojasiewicz condition to attempt to salvage the sublinear convergence rate’s constant.

Lemma 3.7. Let X ∈ R
n×m be a design matrix of rank n, y ∈ R

n a response vector, β0 ∈ R
m

an initial point, and r ∈ R
m
+ such that infi ri > 0. If β : R+ → (Rm, ‖·‖2) follows a mirror

flow with objective β 7→ 1
2‖Xβ − y‖22 and potential 1

2Φr the r-hypentropy compatible with β0,
from β(0) = β0, then β(t) → β∗ = arg min{DΦr(β, β0) : β ∈ arg minF}. Moreover if for all
t ∈ R+, ‖β(t)‖1 ≤ M ∈ R+, then for all t ∈ R+, it holds DΦr(β∗, β(t)) ≤ 1/(κt+ c), where

κ = 1/(C2
∥

∥X⊤†
∥

∥

2

op
), and C = 2m log

(

1 + 2M
m(infi ri)

)

and c = 1/DΦr(β∗, β0).

Proof. Let R = infi∈[m] ri. Let us show that for all t ∈ R+, ‖∇Φr(β(t)) −∇Φr(β
∗)‖2 ≤ C.

First, observe that for x ∈ R
m, it holds in each dimension

|∇φri(xi)| = arcsinh

(∣

∣

∣

∣

xi
ri

∣

∣

∣

∣

)

= log





∣

∣

∣

∣

xi
ri

∣

∣

∣

∣

+

√

(

xi
ri

)2

+ 1



 ≤ log

(

1 + 2

∣

∣

∣

∣

xi
ri

∣

∣

∣

∣

)

Thus with the additional assumption ‖x‖1 ≤M , and arithmetic-geometric inequality

‖∇Φr(x)‖1 =
∑

i∈[m]

|∇φri(xi)| ≤ log





∏

i∈[m]

(

1 + 2
∣

∣

∣

xi
R

∣

∣

∣

)



 ≤ m log





1

m

∑

i∈[m]

1 + 2
∣

∣

∣

xi
R

∣

∣

∣





= m log



1 +
2

mR

∑

i∈[m]

|xi|



 ≤ m log

(

1 +
2M

mR

)

=
C

2

Then since ‖β(t)‖1 ≤M for all t, and thus ‖β∗‖1 ≤M by continuity, it follows

‖∇Φr(β(t))−∇Φr(β
∗)‖2 ≤ ‖∇Φr(β(t))‖2 +‖∇Φr(β

∗)‖2 ≤ ‖∇Φr(β(t))‖1 +‖∇Φr(β
∗)‖1 ≤ C

The result follows by Theorem (2.7) with T0 = 0.

Note that although this results may be interesting for a fixed number of neurons m and
vanishing constant R, the constant C quickly degrades with m, as 2m log

(

1 + 2M
mR

)

−→
m→∞

4M
R .

4 Numerical experiments

Unfortunately, neither of these bounds appear to accurately capture the behavior observed
in practice. Still, to get a sense of the influence of some hyperparameters, we perform
experiments on randomly-generated data. We generate n ∈ N points uniformly at random on
the d-dimensional hypercube of side 2, with labels taken uniformly at random in {±1}. We
then initialize the weights in R

d×m ×R
m independently uniformly at random on the segment

[−α/√m,+α/√m], for some parameter α ∈ R+, and split the directions θ and trainable
parameters w ∈ R

m × R
m. The scaling by

√
m is chosen such that the response remains

approximately constant even when the number of neurons tends to infinity, and decreasing
the parameter α will allow us to artifically let the hypentropy parameter r tend to zero.
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We resample if the initial weights do not satisfy our condition for a well-defined flow,
then train the network by gradient descent wk+1 = wk − µ · ∇(L ◦ N θ)(wk). Our bounds
being constrained to the continuous time domain, we use small step sizes (µ = 10−4) and the
surrogate tk = µ× k for the time variable at iteration k. The training is continued until the
objective reaches zero (up to machine precision) and the corresponding value of β is used
as approximation of the limit point β∗ for the computation of the Bregman divergence to
optimum. The resulting figures serve only as vague illustration of the result since the proofs
do not extend as-is to discrete time steps.

Figure (2) depicts the evolution of the Bregman divergence Dφ(β∗, β(t)) over time, for
n = 20 samples in dimension d = 50 and m = 50 neurons with scaling α = 1. This is by
far the most representative situation we encounter in experiments, very fast convergence of
the network, with a linear convergence phase near the optimum. The linear bound’s rate
(κ1 ≈ 6.2 × 10−2) does not quite match the observed rate (κ ≈ 3 × 10−1, measured on the
figure), which results in a large gap with the observed behavior, and the sublinear bound’s
constant (κ2 ≈ 1.7 × 10−5) is too small to show visible improvements before the network
has converged. In this example, (infi ri) ≈ 1.3 × 10−1 and

∥

∥X⊤†
∥

∥

op
≈ 1.5 are computed at

initialization, and M ≈ 1.4 × 101 is measured after training.
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Figure 2: Convergence speed measurements [n = 20, d = 50,m = 50, α = 1 ]

Given the expressions for the constants κ1 and κ2, we can craft a setting in which we
expect the sublinear bound to become more informative. Setting d = 100 to lower the
variance of first layer’s norms, and choosing few neurons (m = 20), with n = 10 samples
and a scaling of α = 10−4, we get the results depicted in Figure (3). As expected, the
linear bound’s rate (κ1 ≈ 1.8× 10−9) decreases so much it becomes completely uninformative
since (infi ri) ≈ 6.9 × 10−9, while the sublinear bound’s constant (κ2 ≈ 4.7 × 10−7) is only
affected logarithmically and retains some use. In this example,

∥

∥X⊤†
∥

∥

op
≈ 1.9 and M ≈ 6.2.

Although the convergence is again very fast once a neighborhood of the optimum is reached,
what makes this regime particulary interesting is that there is a much slower (by several
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orders of magnitude) first phase where the sublinear bound is relatively accurate. When
the hypentropy parameter r ∈ R

m
+ varies, the limit point reached can be very different, and

the time required to reach it varies accordingly. Here r is close to zero, leading to a more
sparsity-inducing task, with slower convergence speed.
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Figure 3: Convergence speed measurements [n = 10, d = 100,m = 20, α = 10−4 ]

An interesting surprise when performing these experiments was the accidental consequences
of altering hyperparameter choices. Our analysis revolved around the split between the linear
predictor β ∈ R

m and the hypentropy parameter r ∈ R
m
+ , with different inductive biases on

the linear predictor characterized by different choices of hypentropy parameters. With a good
prior on the desired linear predictor, one could choose the appropriate parameter to align
the inductive bias with the prior. But that is not how the choice of initialization is typically
made. Instead, weights are initialized in a different parameterization (Rd×m × R

m), with
very different objectives in mind, for instance the concern that some intermediate variables
might blow up past what the machine precision can handle can lead to a factor 1/

√
m in the

choice of initialization scale. In such a setting, increasing the number of neurons will have
unintended consequences, such as altering the hypentropy parameter, and thus the inductive
bias, which is crucial in overparameterized regimes.

5 Ablations and consistency

5.1 Convergence to the Bregman projection of initialization

We have proven in the first section that the mirror flow with least-squares objective converges
to the Bregman projection of the initialization, for all Legendre potentials alike, provided
the mirror flow is well defined. However, this need not be true for all convex objectives, it
appears as property of the least-squares objective specifically.

Intuitively, the least-squares objective is non-biasing, in the sense that the gradient is
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orthogonal to all segments between minima, such that the gradient never biases the flow
towards one particular minimum. This guarantees that the Bregman projection is constant.
However the Bregman projection to the set of minimizers of the limit point is itself, since the
limit point is a minimizer as well by convexity of the objective, thus the limit point is the
Bregman projection of the initialization.

If β∗ is the limit point, β̄ a minimizer of F , then for a mirror flow with potential φ,

d

dt

(

Dφ(β∗, βt) −Dφ(β̄, βt)
)

= −
〈

∇F (βt), β
∗ − β̄

〉

If F is a least squares objective, then this quantity is always null and thus the projection is
constant. A similar approach is used in Gunasekar et al. [2020] to generalize to linear models
(with respect to the weights w) with a more complicated loss L, that is w 7→ L(〈w, x〉), where
the “linear model” assumption grants the same property under mild assumptions on the loss.

5.2 Necessity of a link between objective and potential

Convexity of the objective F is sufficient to obtain a bound of F (β(t)) ≤ C0/t, regardless
of the potential chosen for the mirror flow. However, in general no such guarantee can be
obtained for the Bregman divergence Dφ. The reason is that the convergence measured by F
and the one measured by φ can be very different. We give a simple example with a different
objective in dimension one below. Note that the minimum is unique in this example, to avoid
the discussion of the previous section.

Lemma 5.1. Choose the domain D = R
∗
+, let φ : D → R be the entropy φ : x 7→ x log x− x,

and F : x 7→ µ
n(n+1)x

n+1 for some n ∈ N
∗ and µ ∈ R

∗
+, with (unique) optimum β∗ = 0 ∈ ∂D.

The solution β : R∗
+ → D to any mirror flow defined by F and φ satisfies for some c ∈ R

∗
+







F (β(t)) =
µ

n(n+ 1)
(c+ µ t)−

n+1

n

Dφ(β∗, β(t)) = (c+ µ t)−
1

n

Letting n → ∞ gives an arbitrarily slow convergence, as measured by φ, while the
convergence measured by F remains relatively similar to C0/t.

Proof. We have already proved that φ is Legendre with ∇φ(D) = R. The objective F : R → R

is clearly convex, therefore for any β0 ∈ D, the mirror flow β : R+ → D with objective
F , potential φ and starting from β(0) = β0 is well defined, unique, and converges to
β∗ = 0. Moreover, we can expand the mirror flow equation d

dt∇φ(β) = −∇F (β) to obtain
d
dt log(β) = −µ

nβ
n, i.e. d

dtβ = −µ
nβ

n+1, which yields by integration β(t) = (c+ µt)−1/n for
c = β−n

0 . Then, observe that for β∗ = 0, it holdsDφ(β∗, β) = φ(β∗)−φ(β)−∇φ(β)(β∗−β) = β.
The result follows by replacing β(t) by its expression.

5.3 Reduction to standard gradient flow bound

When the domain is D = R
m and φ : β 7→ 1

2‖β‖22, the mirror flow with potential φ is a
gradient flow. If the objective F is µ-strongly convex, i.e. if DF (β0, β1) = 1

2‖Xβ0 −Xβ1‖22 ≥
µ
2‖β0 − β1‖22, then choosing the ℓ2 norm as reference,

∥

∥X⊤†
∥

∥

2

op
= sup‖v‖2≤1‖(X⊤)

†
v‖22 =

sup‖X⊤u‖2≤1‖u‖22 = 1
µ , and ∇φ is 1-Lipschitz with respect to ℓ2. The bound obtained by

Theorem (2.6) in this case is Dφ(β∗, β(t)) = 1
2‖β∗ − β(t)‖22 ≤ 1

2‖β∗ − β0‖22 exp(−µt), which
corresponds to ‖β∗−β(t)‖2 ≤ ‖β∗−β0‖2 exp(−µ

2 t). In contrast, the standard bound obtained
in this setting by analyzing the gradient flow is ‖β∗ − β(t)‖2 ≤ ‖β∗ − β0‖2 exp(−µt). Our
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bound is off only by a factor two in the constant, which is expected since our proof uses
Dφ(β∗, β) ≤ Dφ(β∗, β) + Dφ(β, β∗) = 〈∇φ(β∗) − ∇φ(β), β∗ − β〉 and proceeds to bound
the latter. If the Bregman divergence Dφ is symmetric, as is the case here, then it holds
2Dφ(β∗, β) = 〈∇φ(β∗) − ∇(β), β∗ − β〉, which can be used to gain the missing factor two.
Note that while we can’t improve our bound by this method, for we need it to cover the
hypentropy which has asymmetric Bregman divergence, we did properly incorporate the
factor two gained from the symmetry of the least-squares-induced Bregman divergence DF .

5.4 A closer look at the operator norm involved

Let m be the number of neurons, (xi ∈ R
d)i∈[n] the training samples, and (θj)j∈[m] ∈ (Sd−1)

m

the directions of the first layer neurons. The design matrix X ∈ R
n×m is defined as

Xi,j = (〈θj , xi〉)+. We wish to understand the operator norm L of the left inverse of X⊤,
with respect to the norm ‖·‖∗ on R

m,

L = sup
{

‖u‖2 | u ∈ R
n, ‖X⊤u‖∗ ≤ 1

}

In the underspecified case, if the rank of X is less than n, then L = +∞. Indeed for
u ∈ Ker(X⊤)\{0}, and λ ∈ R+, it holds X⊤(λu) = 0, however ‖λu‖2 →λ +∞. This happens
for instance if there are two identical samples xi = xj for i 6= j.

While it seems reasonable that the bound should become uninformative if there are two
samples very close with wildly different responses yi and yj , it appears that if the responses are
identical, the problem is not made much more difficult if the samples are similar. This absence
of assumption on the response could be a good candidate explanation for the discrepancies
observed between our bound and empirical behavior.

6 Conclusion

We have shown some bounds on the convergence speed of a two-layer network with fixed first
layer directions and a least-squares objective, by reparameterizing this gradient flow as a mirror
flow that we could analyze by showing that it satisfies some  Lojasiewicz conditions. The choices
of parameterization played a central role in this work, and the restricted setting chosen allowed
us to obtain several consistent pictures of the training dynamic given by different choices
of parameterizations. A choice of gradient flow in one parameterization induces a different
metric in another parameterization, with far from obvious consequences on the inductive bias
that it introduces, although these can be somewhat disentangled by changing points of view.
Another important point that came up was the obscure consequences on the inductive bias
triggered by some hyperparameter choices. What looks like a harmless engineering trick from
one point of view can be interpreted as a dramatic change of hyperparameters in another.
Different parameterizations, even when the dynamic they describe is identical, could have
hyperparameters entangled differently, and it remains unclear how to perform meaningful
comparisons to understand the intrinsic influence of a single hyperparameter.

However, the bounds obtained in this way do not seem to give a very accurate description
of the network’s weights’ evolution in our numerical experiments, and the conditions in
which our bounds are most accurate are far from the settings in which neural networks
are practically used. The analysis also relies heavily on there being two layers with fixed
directions for the first layer, which is a rather unusual choice limiting the applicability of
these results. Moreover, the crucial steps of reparameterizing to obtain a mirror flow, and
the convergence to the Bregman projection of the initialization seem to be specific to our
assumptions, leaving little space to generalize these results to broader settings.
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A Minor technical lemmae

A.1 Existence and uniqueness of least-squares mirror flow

Lemma A.1. Let X ∈ R
n×d, y ∈ R

n, and define F : Rd → R the loss β 7→ 1
2‖Xβ−y‖22. If D

is a nonempty convex open subset of Rd, and φ : D → R is a convex function of Legendre type
satisfying ∇φ(D) = R

d, then for every β0 ∈ R
d, there exists a unique solution β : R+ → D to

the differential equation d
dt∇φ(β) = −∇F (β) such that β(0) = β0.

Proof. Let φ∗ be the convex conjugate of φ. Since φ is Legendre and ∇φ : D → R
d is surjective,

it is also a bijection of inverse ∇φ∗. Let G : Rd → R
d be the function γ 7→ ∇F (∇φ∗(γ)),

differentiable as a composition of differentiable functions. By strict convexity of φ, the inverse
mirror map ∇φ∗ is locally Lipschitz, thus so is G. The gradient flow d

dtγ = −G(γ) hence has
a unique maximal differentiable solution γ : I → R

d, with I an open interval of R containing
0, by Picard-Lindelöf theorem. Taking β = ∇φ∗(γ) : I 7→ D thus gives the existence of a
solution. Similarly, if β and β′ are two solutions, then ∇φ(β) and ∇φ(β′) are two solutions
of the previous gradient flow. By uniqueness of such solutions, β = β′. It then only remains
to show that sup(I) = +∞. By maximality of the open interval I, it is sufficient to show
that if sup(I) < +∞, then the path γ = ∇φ(β) has finite length, so that it can be extended
to contradict maximality of I. To do so, note that by a classical mirror descent argument
(see Thm 2.3, or [Bubeck, 2015, Chap. 4]), the objective value t 7→ F (β(t)) is decreasing over
time, hence since the sublevel sets of F are compact, t 7→ ‖β(t)‖2 is bounded. Observing that
‖ d
dtγ‖2 = ‖∇F (β)‖2 is bounded, because ∇F is Lipschitz, concludes the proof.
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A.2 Lorentz cone condition for well-defined gradient flow

Lemma A.2. Let (xi, yi)i∈[n] be a set of n observations with xi ∈ R
k and yi ∈ R. Let

(θi)j∈[m] be the first layer directions θj ∈ S
k−1. Let f : Rm × R

m → R be the objective

f : (a, b) 7→ 1

2

∑

i∈[n]



yi −
∑

j∈[m]

bj(ajθj · xi)+





2

If (a0, b0) ∈ R
m×R

m is such that ∀i ∈ [m], [a0]
2
i − [b0]

2
i ≥ 0, then there exists a unique solution

w : R+ → R
m × R

m to the differential equation dw
dt = −∇f(w) satisfying w(0) = (a0, b0).

The problem is that the objective f is not differentiable on its whole domain. Indeed,
the ReLU non-linearity x 7→ (x)+ = max(0, x) is not differentiable at zero. Under the stated
condition, we can rule out the singularities introduced by the ReLU non-linearity such that
the gradient flow remains well defined. See Figure (4) for a visual depiction of this issue.
Assume for simplicity that for all (i, j) ∈ [n] × [m], it holds θj · xi 6= 0 (otherwise ommit this
term in the loss to remove the singularity consistently, similarly to the following proof).

conserved hyperboles
singularity (a = 0)

rejected region
border of stable region

stable region

norm of first layer weight (aj)

va
lu

e
of

se
co

n
d

la
ye

r
w

ei
gh

t
(b

j
)

conserved hyperboles
singularity (a = 0)

rejected region
border of stable region

stable region

norm of first layer weight (aj)

va
lu

e
of

se
co

n
d

la
ye

r
w

ei
gh

t
(b

j
)

Figure 4: Directions of a gradient vector field with ReLU (colored by stability of region)

Proof. LetK = {(a, b) ∈ R
m×R

m | ∀i ∈ [m], a2i−b2i ≥ 0}, and for all j ∈ [m], let Sj = {(a, b) ∈
K | (aj , bj) = (0, 0)} be the j-th slice singularities. The objective function f is differentiable
on K \ (∪jSj), and we can extend the definition of ∇f to all K by continuity, by setting
[∇f(a, b)]j = (0, 0) if (a, b) ∈ Sj as a convention in the definition of the gradient flow. Let
δi : K 7→ R be the error in the response of the network, δi : (a, b) 7→∑

j∈[m] bj(ajθj · xi)+− yi.
The gradient of the objective is as follows (well-defined since aj = 0 ⇒ bj = 0 in K).

∇f |K (a, b) =





∑

i∈[n]

sign(aj)bj(θj · xi)+ δi(a, b),
∑

i∈[n]

|aj |(θj · xi)+ δi(a, b)





j∈[m]
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It is then sufficient to check that any solution to the gradient flow equation remains in K.
To do so, we will simply observe that the quantity a2j − b2j is constant, hence on every slice the
hyperboles from Figure (4) that are conserved by gradient flow. Let (a, b) : R+ → R

m × R
m

be a solution to the gradient flow equation with (a, b)(0) ∈ K. Let j ∈ [m]. For succintness,
write µj(a, b) =

∑

i∈[n] (θj · xi)+δi(a, b), and observe that a2j − b2j is constant over time

d

dt

(

a2j − b2j
)

= 2aj
daj
dt

−2bj
dbj
dt

= −2aj
∂f

∂aj
+2bj

∂f

∂bj
= 2µj(a, b) (− sign(aj)ajbj + bj |aj |) = 0

Hence for all t ∈ R+, aj(t)
2− bj(t)2 = aj(0)2− bj(0)2 ≥ 0, thus (a(t), b(t)) ∈ K. Moreover, aj

does not change signs, for if aj(t) = 0 for some t, then bj(t) = 0 because aj(t)
2 − bj(t)

2 ≥ 0,
and thus (aj , bj) is stationnary.

In high dimensions6, and with independently identically distributed weights for each
neuron, the above condition is satisfied with very high probability. Intuitively, the gaussian
distribution in high dimensions is similar to the uniform distribution on a sphere, that is to
say that the ℓ2-norm of a gaussian variable in high dimensions is very concentrated around a
single value that increases with the dimension. In this setting, the condition that states that
the first layer’s norm must be larger than the second layer’s corresponding weight is almost
always satisfied. Figure (5) depicts the probability that all m neurons satisfy the condition
as a function of the input dimension d, for gaussian and uniform initializations.
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Figure 5: Probability of satisfying the condition for iid weights and m neurons.

A.3 Hypentropy properties

Lemma A.3. For α ∈ R
∗
+, the α-hypentropy φα : x 7→ x arcsinh(x/α) −

√
x2 + α2 + α

is twice differentiable over R with first and second derivatives φ′α : x 7→ arcsinh(x/α) and
φ′′α : x 7→ 1/

√
x2 + α2. For the case α = 0, for any z ∈ R \ {0}, the 0-hypentropy compatible

with z, φ0 : x 7→ |x| log |x|− |x|+ 1 is twice differentiable over its domain with first and second
derivatives φ′0 : x 7→ (x/|x|) log |x| and φ′′0 : x 7→ 1/|x|.

Note that in both cases, the second derivative of φα can be written x 7→ 1/
√
x2 + α2.

6that is input dimension d, not number of neurons m, with the previous notation
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Proof. For the first part, recall that arcsinh : x 7→ log(x+
√
x2 + 1) is differentiable over R

with derivative x 7→ 1/
√
x2 + 1. Then for any α > 0, φα is differentiable as a composition of

differentiable functions, and a quick computation shows the result. For the second part, if
z > 0 then the domain is R

∗
+, and φ0(x) = x log x − x + 1, which is twice differentiable as

before with first and second derivatives φ′0(x) = log x and φ′′0(x) = 1/x. If on the other hand
z < 0, then the domain is R

∗
−, and φ0(x) = −x log(−x) + x + 1 is also twice differentiable

with first and second derivatives φ′0(x) = − log(−x) and φ′′0(x) = −1/x, hence the result.

A.4 Some more numerical experiments

For the bound Dφ(β∗, β(t)) ≤ 1
κ2 t+c from Lemma (3.7), our constant κ2 =

(

C2
∥

∥X⊤†
∥

∥

2

op

)−1

uses a constant that remains finite when the number of neurons m tends to infinity, C =

2m log
(

1 + 2M
m(infi ri)

)

−→
m→∞

4M
infi ri

. However, as the number of neurons grows, its dependence

on the vanishing parameter (infi∈[m] ri) becomes worse, rendering this second bound almost
as uninformative as the linear bound. Figure (6) depicts some results for m = 1000 neurons.
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Figure 6: Convergence speed measurements [ d = 100,m = 1000, α = 10−4 ]

In the first example, both constants (κ1 ≈ 6.9×10−9 and κ2 ≈ 4.7×10−8) are too small to
indicate meaningful improvements. In this example, (infi ri) ≈ 1.1 × 10−10,

∥

∥X⊤†
∥

∥

op
≈ 0.13,

and M ≈ 3.2. The divergence is seen dropping on the figure and reaches 10−15, after which it
becomes numerically unstable.

In the second example, the constants have relatively similar values (κ1 ≈ 2.2 × 10−9 and
κ2 ≈ 1.3 × 10−8). The maximum ℓ1 norm of β on the trajectory rises to M ≈ 20, likely due
to the higher number of samples leading to a less sparse optimum, and (infi ri) ≈ 1.2× 10−10,
∥

∥X⊤†
∥

∥

op
≈ 2.3 × 10−1. The training is stopped early for this latter experiment (objective

value at 10−5 at t = 4.0 × 105) due to the particularly slow convergence speed and increased
computational cost of each iteration.
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