
ÉCOLE NORMALE SUPÉRIEURE

DÉPARTEMENT D’INFORMATIQUE

RAPPORT DE STAGE DE MASTER 1

Neural Network Compression

David A. R. Robin

david.robin@ens.fr

Feb-Aug 2019

Advisor

Swayambhoo Jain

Contents

1 Context 2

1.1 Neural network overparameterization . 2

1.2 A note on retraining . 2

1.3 Connection pruning . 3

1.4 Low-rank approximations . 4

1.5 Neuron removal . 5

1.6 Activation reconstruction . 5

2 Contribution 6

2.1 Single layer approximation idea . 6

2.2 Leveraging consecutive layers . 6

2.3 Comparison with low-rank . 7

2.4 Solving the linear reconstruction problem . 8

2.5 Extension to convolutional layers . 9

2.6 Extension to residual layers . 10

2.7 Chaining reconstructions . 10

3 Experiments 11

3.1 Fair evaluation of linear reconstruction . 11

3.2 General results . 12

3.3 Reconstruction chaining and debiasing . 12

4 Conclusion 13

5 Appendix 15

5.1 Proof of optimal brain surgeon step . 15

5.2 Compressed Sparse Row sparse storage cost . 15

5.3 Proof of Lemma 1 (commutation of C and σ) . 16

5.4 Proof of Lemma 2 (convergence rate of FISTA) 16

5.5 Better initial points: Alternate minimization . 17

1

1 Context

1.1 Neural network overparameterization

Neural networks have demonstrated great empirical success in a wide range of machine-learning tasks.
Such models are typically heavily overparameterized, and trained networks exhibit high levels of
redundancy. Denil et al. [2013] for instance is able to predict over 90% of weights in a convolutional
neural network. Similarly, Hinton et al. [2015] transfers knowledge from a trained overparameterized
network into a shallower student network, to the point where the student is able to achieve the same
accuracy as its teacher, even with an order of magnitude fewer weights. Precisely how many weights
are required to perform a given task accurately is not well understood yet, but recent works are
starting to prove that this overparameterization is benefical during the training. Allen-Zhu et al.
[2018] proved that sufficiently overparameterized networks can converge to global optimum with
stochastic gradient descent, even when the objective is not only non-convex, but also non-smooth.
Although being beneficial during the training, such an overparameterization may not be required to
achieve similar accuracy. It turns out that most of the weights of a network can often be removed
without inducing significant drops in accuracy [LeCun et al., 1990, Hassibi and Stork, 1993, Han
et al., 2015a].

From an architecture design point of view, it is also much easier to overparameterize an architecture
to make sure it will be able to complete the task at hand, without thinking about the associated
complexity, and defer the memory concerns to a later design stage, as was the case for instance with
SqueezeNet [Iandola et al., 2016], a more memory-efficient alternative to AlexNet achieving the
same performance with 50 times fewer parameters, presented four years after the original AlexNet
architecture.

The goal of compression is to compute light-weight approxi-
mations of large trained neural networks to curb their storage
requirements while maintaining similar prediction accuracy.

1.2 A note on retraining

Recent works in network compression have tended to split the compression pipeline into an approxi-
mation step aggressively compressing the network and incuring a severe accuracy loss, and a second
retraining step meant to help the compressed network recover the initial accuracy. The accuracy is
thus not retained throughout compression, but rather lost and then recovered given enough retraining.
This iterative retraining is similar to the initial training step, and in some cases the retraining time
needed to do so may be of the same order of magnitude of the initial training time. It is unclear
whether compression methods relying on a heavy retraining step truly act as a compression of the
initial model, or only use the said model to find a smaller architecture equally well suited to the task
which is then trained during the “retraining” as it would have been trained from scratch.

Liu et al. [2019] shows that in the case of weight pruning, it is possible to randomly reinitialize
the weights before the retraining step, and still achieve the same accuracy as the non-reinitialized
network with a similar training time. This hints towards the fact that weight pruning uncovers a
good architecture, more than it actually compresses a network. In order to avoid hiding these issues
behind the retraining step, we focus in this work in compression without iterative retraining. Any
such compression can easily be extended to the previous setting by simply appending an iterative
retraining step to regain any possibly lost accuracy.

2

1.3 Connection pruning

The earliest works that can be identified as network compression were concerned with overfitting
rather than compression, and proposed to reduce the number of free parameters by drawing informa-
tion from the Hessian of the network’s loss function and removing unimportant connections between
neurons.

Writing w ∈ Rn the weights of a neural network, and L : Rn 7→ R its loss function, the Taylor-Young
expansion of the loss to third order is written

L(w + δw) = L(w) +∇L(w)T · δw +
1

2
δwT · ∇2L(w) · δw +O(‖δw‖3)

The first order term is zero for a fully trained network, since ∇L(w) = 0. When setting a single
entry of w to zero, say the qth, we have δw = −wq · eq , which gives an approximate loss increase of

L(w + δw)− L(w) ≈ 1

2
w2
q · ∇2L(w)q,q

This means that the error increase caused by the deletion of a single weight is proportional to the
magnitude w2

q of the said weight. Naturally, if one were to delete a weight, it would be wise to update
the remaining weights accordingly. When deleting weight wq , we can minimize the approximate loss
increase stated above over δw under the constraint δwT eq + wq = 0, which gives1

δw = − wq
(∇2L(w)−1)q,q

∇2L(w)−1eq L(w + δw)− L(w) =
1

2

w2
q

(∇2L(w)−1)q,q

This yields an iterative single-weight pruning algorithm presented in LeCun et al. [1990] and Hassibi
and Stork [1993] (also known as “optimal brain damage” and “optimal brain surgeon”).

For big networks however, the Hessian quickly becomes intractable, and inverting it on every iteration
is unreasonably expensive. Inspired by the observation that the loss increase when deleting a single
weight is proportional to its magnitude, Han et al. [2015b] suggest to delete all weights whose
magnitude lie below a certain threshold (note that the loss increase proportionality to magnitude does
not hold in this case for non-diagonal Hessians, i.e. most of the time). This works surprisingly well,
and Han et al. [2015a] shows that given enough retraining, up to 90% of the weights can be discarded
in this fashion without noticing an accuracy drop. Although the extensive retraining mandatory for
this method to work make it questionnable [Liu et al., 2019], it at least shows that typical neural
network architectures are highly compressible. Dong et al. [2017] tackles the computational issue
differently, by leveraging a layer-wise approximation of the Hessian to estimate parameter’s saliency
without directly needing to compute the Hessian or its inverse, and thus avoid removing important
yet low-magnitude weights, limiting the required retraining, but not eliminating it.

From a compression point of view, these approaches all have the drawback of preserving the size of
the weight matrices despite reducing their number of non-zero entries, inducing a storage overhead
compared to smaller matrices with the same number of free parameters. Indeed, storing an (n, n)
matrix with a non-zero entries require 2a+ n numbers2 because one has to store not only the values
of these non-zero entries, but also their position in the bigger matrix. Han et al. [2015a] reports that
this index overhead accounts for about half of the final storage cost of heavily pruned models. This
incentivizes research to reduce the size of the matrices involved to obtain truly optimal compression.

1see appendix for a proof of this result, section 5.1
2see appendix for details on this encoding, section 5.2

3

Magnitude-based pruning is equivalent to solving the following optimization problem, removing
connections between neurons as shown in Figure 1

min
M

‖M‖0≤p

‖W −M ‖2F

Pruning

Figure 1: Magnitude pruning: dangling neurons (red) and remaining redundancies (blue)

On top of the sparsity issue, magnitude-based pruning alone as a compression method suffers from
the following drawbacks. First, it may leave dangling neurons whose output is not used because they
are followed by low-magnitude weights or whose input has been deleted (in red in Figure 1). Such
weights could be discarded at no cost to improve the compression, but are kept because they have high
magnitudes. Han et al. [2015a] argues that this is not an issue since enough retraining with weight
decay will eventually bring these useless weights to zero. Another similar issue is that redundancies
are not leveraged, neurons having the exact same weights perform redundant computations (in blue
in Figure 1) and one of them could be discarded since the other may be used instead at no cost, yet
because they have the same magnitude they are either both kept or both discarded.

1.4 Low-rank approximations

From a deep view, a “redundancy” in the network is essentially something that can be “factored
away”. A natural way to do so when working with linear operators thus comes to mind: low-rank
factorization of weight matrices. Low-rank approximations of weight matrices can be computed
through singular value decomposition, and several works have shown how to extend this to higher
order convolutional kernels via canonical polyadic decompositions [Denton et al., 2014, Jaderberg
et al., 2014, Tai et al., 2015, Lebedev et al., 2014].

Low-Rank

Figure 2: Low-rank approximation shape change

A rank-r approximation of an (n,m) matrix will take the storage cost from O(nm) to O(r (n+m)).
Although significantly curbing the storage cost of the network, this has the drawback of preserving the
number of input and output neurons of a layer. This essentially means that the low-rank approximation
is only as good as the initial architecture, in the sense that if too many hidden neurons were selected
during architecture search, then the low-rank compression cannot be optimal, since the storage cost
will be lower bounded by a linear function of this initial choice: the low-rank method is not able to
recover from this bad architectural choice.

4

1.5 Neuron removal

He et al. [2014] proposes to fix this neuron count preservation issue by estimating the importance of
hidden neurons and dropping the hidden neurons with the lowest scores. Alternatively, Srinivas and
Babu [2015] analyzes weight matrices to merge neurons with similar weights, updating the weights
of the next layer to account for this merging instead of just dropping some neurons. Mariet and Sra
[2015] go further in this direction by merging neurons that, as a group, perform redundant calculations,
rather than individually merging pairs of neurons. This is achieved by defining a probability measure
over subsets of neurons, and sampling from it to get a “diverse” set of neurons. The weights of the
following layer are then updated to only rely on the sampled neurons, effectively removing the others.
We show however that splitting the selection and re-weighting is not necessary, and we can instead
jointly optimize both, leading to better solutions.

1.6 Activation reconstruction

Since the goal is to preserve only the accuracy of the network, and not the network itself, it is not
required to approximate the weight matrices themselves, but only their action with respect to a
particular input distribution. In particular, two neurons giving similar outputs despite having very
different weights, for instance because they rely on redundancies in their inputs, should be considered
similar for the purpose of compression.

Consider for concreteness a feed-forward fully-connected L-layer network with weights (Wk)k<L
and non-linearities (σk)k<L whose input is a random variable Z0 ∼ D0. The activations after
each layer are given by Zk+1 = σk(Wk · Zk). Approximating the weight matrices is enough to
approximate the final output ZL, since

Ẑk ≈ Zk , Ŵk ≈Wk ⇒ Ẑk+1 ≈ Zk+1 (1)

However, the property we really need in order to propagate this approximation is not control over an
intrinsic distance between weight matrices, but control over a distance between the layer’s actions

Ẑk ≈ Zk , σk(ŴkZk) ≈ σk(WkZk) ⇒ Ẑk+1 ≈ Zk+1 (2)

We have the following relations between three kinds of weight approximations

Ŵk ≈Wk ⇒ ŴkZk ≈WkZk ⇒ σk(ŴkZk) ≈ σk(WkZk) (3)

Note that no two of these approximations are equivalent in the general case. The weight approximation
(first in Equation 3, propagated by Equation 1) is data-agnostic and thus potentially sub-optimal.
The non-linear action approximation (third in Equation 3, propagated by 2) is obtained by solving
a problem that is non-convex, in some cases non-smooth, and more generally arbitrarily complex
since any mostly-differentiable function is an acceptable non-linearity for a neural network, which
makes it a very hard problem to solve in general, so let us aim for the second approximation,
i.e. linear activation reconstruction.

5

2 Contribution

2.1 Single layer approximation idea

Consider a fully connected layer with weight W ∈ Rh×n. We wish to approximate its output with
respect to an input distribution D, approximated in practice by a finite number of samples consituting
a training set. We consider in the following that the random variable X is drawn from D, omitted
in the indices to alleviate notations. We build on top of the low-rank approximation idea, which for
fully connected layers reduces to the following optimization problem

min
P∈Rh×r,Q∈Rn×r

EX
∥∥WX −PQTX

∥∥2
2

Q in this setting may be interpreted as a linear feature extractor, and P as a linear reconstruction of
the output from the extracted features. To avoid manual selection of the target rank, one may relax
this into a low-rank representation problem with a smooth matching constraint, and use the common
relaxation of the rank into a nuclear norm to obtain instead the following problem

min
M

EX ‖WX −MX ‖22 + λ · ‖M‖∗

where λ is a parameter that controls the tradeoff between compression and accuracy. High values of
λ will favor smaller networks, at the expense of approximation quality, whereas lower values will
give more accurate approximations but increase the storage cost.

As we have seen above, this approach does not as-is allow a reduction of the number of neurons.
However, we may add a constraint to Q in order to gain a property that will allow us to do so. We
thus propose to restrict the feature extractor of the low-rank approximation to be a feature selector,
that is to say reduce the search space to matrices of the form PCT , with C ∈ {0, 1}n×r such that
CT1n = 1r being a feature selector that selects r of the initial n input neurons.

2.2 Leveraging consecutive layers

Feature selectors have the interesting property that they can be applied indifferently before or after the
non-linearity. This allows to significantly reduce the memory footprint of consecutive fully connected
layers approximated in this fashion. Consider for concreteness three fully connected layers W0,
W1 and W2 with d inputs, h0 and h1 hidden neurons and h2 outputs, with layers separated by a
non-linearities σ0 and σ1, computing the mapping

x ∈ Rd 7→ W2 · σ1(W1 · σ0(W0 · x)) ∈ Rh2

The approximations of the three layers as stated above allows the following rewritings

W2 · σ1(W1 · σ0(W0 · x))

≈ P2C
T
2 · σ1(P1C

T
1 · σ0(P0C

T
0 · x))

= P2 · σ1(CT
2 P1 · σ0(CT

1 P0 ·CT
0 x))

= Ŵ2 · σ1(Ŵ1 · σ0(Ŵ0 ·CT
0 x))

Meaning that the output of the three-layer network (W0,W1,W2) can be accurately approximated
by a smaller three-layer network (CT

1 P0,C
T
2 P1,P2) of the same architecture with only a different

number of hidden neurons, and an input sampler CT
0 . If the associated ranks are respectively r0, r1

and r2, the network size will be

original : h2 × h1 + h1 × h0 + h0 × d

compressed : h2 × r2 + r2 × r1 + r1 × r0 + α · log2
(
d

r0

)

6

Note how h1 and h0 are not present in the compressed cost, only the number of inputs (d) and outputs
(h2) are preserved, other intermediate neurons can be removed by this approximation. The last term
accounts for the storage of the first input sampler. There are (up to row reordering that can be applied
to P instead)

(
d
r0

)
such samplers, thus a storage cost of log2

(
d
r0

)
bits, and the α constant accounts

for the fact that this cost is expressed in bits where the cost of the weight matrices were expressed
in number of floating-point numbers to be stored (α = sizeof(float)−1). Note that this cost is
negligible in practice since it cannot exceed d bits (for each input, 1 if it is kept, 0 otherwise, sufficient
to encode the sampler).

The key property to ensure the low-rank approximation can be converted into a substantial storage gain
is the commutation of σ and the action of CT . Although restricting the linear feature extractor CT to
be a feature selector might seem a little extreme, we argue that even for simple non-linearities like the
commonly used ReLU, feature selectors are the only linear operators with this property (see Lemma 1,
proof deferred to the appendix, section 5.3). This is of course to be expected since non-commutation
with linear operators is a main feature of non-linearities that justified their introduction in neural
networks in the first place, to prevent consecutive linear operators from collapsing into a single one.

Lemma 1 If C is a linear operator whose action commutes with the pointwise ReLU non-linearity
σ : x 7→ max(0, x), then up to row rescaling, C is a feature selector.

2.3 Comparison with low-rank

Low-Rank : M = PQT

– P ∈ Rh×rQ

– Q ∈ Rd×rQ

Column-sparse : M = PCT

– P ∈ Rh×rC

– C ∈ {0, 1}d×rC , CT1d = 1r

For the same `2 reconstruction error, low-rank is less constrained, hence rQ ≤ rC . But it doesn’t
remove hidden neurons, which may end up dominating the cost of the approximation. We can thus see
two regimes emerge : heavy overparameterization (rC � d) where column-sparse approximations
will be more efficient since the neuron removal is the bottleneck, and light overparameterization
(rC ≈ d) where column-sparse approximations will have close to no effect but low-rank ap-
proximations may still be able to achieve significant gains. Interesting to note is that in the heavy
overparameterization setting, one can apply a column-sparse approximation which will bring the
network back to the light overparameterization case, and still apply a low-rank approximation on top
of the first approximation to gain even more compression since the neuron count bottleneck has been
removed.

Figure 3: Low-rank vs. Column-sparse shape changes

Although similar to the pruning approximation discussed above, in that this approximation deletes
unimportant neurons where pruning deleted weights, this approach does not seem to suffer so much
from the pruning drawbacks previously seen. Layers are still fully connected, hence no dangling
neurons appear, and redundancies can be leveraged to delete neurons since the following weight
matrix is updated to minimize the number of input neurons used to reconstruct the output.

7

2.4 Solving the linear reconstruction problem

By observing that matrices of the form PCT under the above constraints are exactly column-sparse
matrices with r non-zero columns out of n columns, and using the `2,1 norm as a proxy for their
number of non-zero columns in the same way that we had used the nuclear norm as a proxy for the
rank, we can consider the following distinct relaxation

min
M

EX ‖WX −MX ‖22 + λ · ‖M‖2,1 (4)

where ‖M‖2,1 =
∑
j

√∑
iM

2
i,j is the `2,1 norm of M, i.e. the sum of the `2-norms of its columns.

The `2,1 norm has already been shown useful for input subset selection when approximating linear
operators in Jain and Haupt [2017].

With the empirical approximation ofD byN samples (xi ∈ Rd)i<N , and rescaling the reconstruction
error by a factor 2 without loss of generality to simplify gradients, Problem (4) becomes

min
M

1

2N

∑
i

‖Wxi −Mxi ‖22 + λ · ‖M‖2,1 (5)

The sum over all xi would requires us to go through the whole dataset to evaluate this objective,
which would usually be very expensive, so let us move it out of the way. Using A = W −M,

EX ‖AX ‖22 = EX Tr
(
A ·XXT ·AT

)
= Tr

(
A · (EXXXT) ·AT

)
Thus, we can precompute the uncentered auto-covariance matrix (i.e. the auto-correlation matrix)
R = EX [XXT] (or R = 1

N

∑
i xix

T
i in the empirical case) of size (d, d) and then evaluate our

objective in O(hd2), which does not depend on the number of samples in the dataset. This means in
particular that once the said matrix has been computed, solving this problem can be done entirely in
memory (or on GPU) without any need to perform expensive I/O calls.

Solving with convergence guarantees

This problem is convex, therefore relatively easy to solve. We chose to solve it in the following
experiments with a Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [Beck and Teboulle,
2009], an accelerated proximal gradient method, which achieves a quadratic convergence (proof
deferred to the appendix, see section 5.4) to the unique global optimum in our setting since the
objective is strictly convex.

Algorithm 1 FISTA with fixed step size
input: X ∈ Rh×N : input to the layer,

W ∈ Ro×h : weight to approximate,
λ : hyperparameter

output: M ∈ Ro×h : reconstruction
R← XXT /N
L← largest eigenvalue of R
M← 0 ∈ Ro×h , P← 0 ∈ Ro×h
t← λ /L , k ← 1 , θ ← 1
repeat

θ ← (k − 1) /(k + 2) , k ← k + 1
A←M+ θ (M−P)
dA← (W −A)R
P←M, M← proxt‖·‖2,1(A− dA/L)

until desired convergence

Algorithm 2 Proximal operator of `2,1 norm

input: t : scaling factor, M ∈ Ro×h

output: prox t ‖·‖2,1(M)

r ← 0 ∈ Rh

for i from 1 to h do
if ‖CiM‖2 < t then ri ← 0

else ri ← 1− t / ‖CiM‖2
return M · diag(r)

8

Lemma 2 Let L : M 7→ 1
2EX ‖WX −MX ‖22 + λ · ‖M‖2,1,

(Mk)k the iterates obtained by FISTA as described above, and M∗ the global optimum. Then

L(Mk)− L(M∗) ≤
2L

k2
‖M0 −M∗‖2F

where L = λmax(EX [XXT]) is the spectral radius of the auto-correlation matrix

Choosing M0 = 0, we can get a looser bound with the following observation

‖M∗‖2F ≤ ‖M
∗‖2,1 ·min

(√
d, ‖M∗‖2,1

)
and by definition of M∗, we have

∀M, ‖M∗‖2,1 ≤
1

λ
L(M)

which gives a nice way to obtain a bound on the absolute error on the objective which is refined as
we execute the algorithm and get lower values of L(M), usable for a stopping condition for instance.

Alternatively, since the quadratic convergence bound’s constant depends on the initial distance to the
optimum, we derive in the appendix an alternate minimization algorithm giving a better initial point
in reasonable time, see section

Tackling Lasso bias

The Lasso regularization is known to induce a bias because of its shrinkage effect. To tackle this
issue, instead of solving Problem (5) as-is to obtain P and CT , we only retain the sparse support
(i.e. C), and solve again with fixed C but without the `2,1 regularizer to obtain the weight values P,
which is a simple linear regression. We report results obtained with this additional step under the
name "debiased".

2.5 Extension to convolutional layers

The `2,1 regularization is an instance of the more general Group Lasso regularization, that has been
studied for its ability to induce structured sparsity when applied during the training [Alvarez and
Salzmann, 2016, Wen et al., 2016, Scardapane et al., 2017]. These works use groups corresponding to
the parameters of a neuron, and drop a neuron when all its parameters reach zero. Rather than grouping
parameters corresponding to the same output in this fashion (rows in our fully-connected setting) and
dropping output neurons whose parameters are all zero, we grouped parameters corresponding to the
same input (i.e. columns) and dropped the input neurons whose output was not used by the next layer.

We can similarly extend our approach to all types of layers by applying a group lasso regularization by
groups of inputs in place of the `2,1. For convolutional layers for instance, one may group parameters
corresponding to the same input channel, resulting in a channel pruning algorithm that drops entire
channels that are not mandatory to accurately reconstruct the layer’s output.

Note that our previous algorithm can be immediately extended to this case by interpreting the
convolution as a matrix multiplication on a flattened input. For each output position (u, v) in output
channel j, we write X

(u,v)
i the associated input, that will be multiplied by Wj to get (W ∗Xi)j,u,v .

Also note that this rewriting holds for any stride, padding or dilation values.

‖W ∗Xi‖22 =
∑
j

∑
u,v

∥∥∥Wj �X
(u,v)
i

∥∥∥2
2

hence R ∝
∑
i

∑
u,v

vec(X(u,v)
i) · vec(X(u,v)

i)T

9

2.6 Extension to residual layers

Let us first note that the reconstruction presented above merely replaces a weight matrix with an
approximated weight matrix of the same size, only with many more zeros. This enables its use in
any case, regardless of the structure of the network. When writing the network weights to disk, any
reasonable encoder will be able to leverage this structure to reduce the memory footprint of the
encoded network.

However, the removal of unused input neurons cannot be used as-is on residual layers, because
more than one layer may depend on the same input. The key to dealing with this removal is simply
to view CT in the described decomposition M = PCT as an input sampler (channel sampler for
convolutions) that comes before the shrunken layer. If the input is used only once, then the sampler
can be applied statically (i.e. once, on the network weights) which will result in a smaller previous
weight matrix CTW1 as seen previously. On the other hand, if the input is used several times by
incompatible samplers, then they can still be applied dynamically (i.e. on every inference) which will
result in a smaller speedup, since all inputs still have to be computed, but will we compatible with
residual and recurrent layers for instance.

2.7 Chaining reconstructions

We presented a way to approximate a single layer with weights W on input X . In practice though,
one may want to use this technique to approximate each layer of a whole network. When performing
several reconstructions, different cascading strategies are applicable. In order to compare them, let us
first extend Problem (5) to reconstructing an arbitrary output

min
M

1

2N

∑
i

‖yi −Mxi ‖22 + λ · ‖M‖2,1 (6)

FISTA is adapted to this problem by simply changing the gradient of the reconstruction error descent
step, i.e. dA = YXT − AXXT , where YXT can again be precomputed before solving the
reconstruction, as was the case with R.

Now consider a feed-forward fully connected network (sufficient since we have shown how to extend
it to other cases) with weights (Wk)k and non-linearities (σk)k computing the sequence of activations
(Zk)k, where Z0 is the input to the network, and Zk+1 = σk(WkZk)

Approximating the weight Wk can be done with the “true” input X = Zk and “true” output
Y = WkZk, which corresponds to the setting previously described. Since this approximation is
independant from approximations of other layers, we label it parallel. However, the input that the
approximated k-th layer will receive at inference time is not really Zk, since the layers preceding it
will have been approximated as well. We may thus wish to approximate layers sequentially, with the
true output Y = WkZk but with the approximated input X = Ak, defined by Ak+1 = σk(WkAk)
and A0 = Z0. We refer to this sequential forward chaining as top-down3, and hope that it will limit
the accumulation of reconstruction error. Alternatively, since the approximation is discarding neurons,
we may take advantage of this and perform approximations sequentially in the reverse order, to avoid
reconstructing neurons that will be discarded, which would uselessly waste our reconstruction budget.
This corresponds to Y = CT

k+1WkZk and X = Zk, which we will refer to as bottom-up.

3for consistency with the naming “deep” networks, top refering to the input and bottom to the output

10

Parallel Top Down Bottom Up

Original layer

Feature extraction

Reconstruction

Minimized error

Operators

original

extracted

reconstructed

Activations

Figure 4: Strategies for chaining reconstructions

3 Experiments

3.1 Fair evaluation of linear reconstruction

We have presented our approach as a method to compress neural networks. However, it has a
fundamental difference with other state-of-the-art methods : it does not introduce assumptions on the
network. Weight pruning for instance, renders the weight matrices sparse, and this assumption can
be leveraged at the time of encoding the network to a bitstream by using a compressed sparse row
encoding for instance, which will be particularly effective on very sparse matrices. Another common
approach has been quantization of weights, which enables efficient dictionnary-coding approaches to
curb the memory footprint. If the assumptions introduced by two compressions don’t interact too
much with each other, then the two can be composed: one could for instance prune weights, and then
quantize the remaining weights, as was proposed in Han et al. [2015a]. It is not possible however to
compose two distinct quantization approaches.

The method described here is a little special, in that it does not introduce such assumptions. The
“compressed” network obtained in this way is not different from the initial network, it just has fewer
redundancies. This means in particular that any compression that can be applied on the initial network
can also be applied on the compressed form. This approach is thus not really a compression in itself,
but more a pre-processing that can be applied before any other compression.

While comparisons between two quantization methods or two entropy-coding methods seem fair,
comparing this to a quantization for instance would appear unfair because the composition with other
methods would not be taken into account. It would be more relevant to compare a compression to
this pre-processing step followed by a low-rank approximation, followed itself by a weight pruning,
a weight quantization, and an entropy coding before measuring the final size. Ideally, we would
compare for all known compressions the result with and without this redundancy-removing pre-
processing step. Such experiments would quickly become intractable, hence for the sake of this
report, we will only compare to the initial network, and see how much reduction we can get before
compression. We report sizes as simply the “raw” encoding of weight matrices, spending 32 bits per
floating-point number, just to give an idea of the orders of magnitude involved. Such an encoding
does not reflect real storage situations, but does match the size of the network after decoding, i.e. its
size in memory when ready to use, which is still a valuable insight.

11

3.2 General results

We evaluate our approach on three networks : two relatively small on the MNIST handwritten digit
recognition dataset (60k training samples, 10k validation samples), and one on the larger ImageNet
(ILSVRC 2012) image classification dataset (1.2M training samples, 50k validation samples). LeNet-
300-100 is a three-layer fully connected network with respectively 300 and 100 hidden units. LeNet-5
is a convolutional network with two convolutional layers and two fully connected layers. AlexNet is
a much larger 8-layer convolutional network whose last three layers are fully connected.

We apply channel pruning as described in Section 2.5 to layers following a convolutional layer, and
neuron pruning to layers following a fully connected layer.

We report the network accuracies and sizes in Table 1. The "retrained" type corresponds to one
compression pass, followed by one retraining pass, the number of epochs (each training sample seen
once) is reported between parentheses. We only investigate the very limited retraining scenario, but
if more computational budget is available, one can naturally get even better compression rates by
allocating more budget to the retraining.

Table 1: Compression results

Dataset Network Error Comp. rate Size
Architecture Type Top-1 Top-5

MNIST

LeNet-300-100
Baseline 1.68 % - - 1.02 MiB
Compressed 1.71 % - 46 % 482 KiB
Retrained (1) 1.64 % - 29 % 307 KiB

LeNet-5 (Caffe)
Baseline 0.74 % - - 1.64 MiB
Compressed 0.78 % - 16 % 276 KiB
Retrained (1) 0.78 % - 10 % 177 KiB

ImageNet AlexNet Baseline 43.48 % 20.93 % - 234 MiB
Compressed 45.36 % 21.90 % 39 % 91 MiB

Figure 5: Influence of debiasing on reconstruction quality (LeNet-5 Caffe)

3.3 Reconstruction chaining and debiasing

We first check that the debiasing step we suggested is not performed in vain, by compressing a single
layer and reporting the accuracy as a function of the number of input neurons kept for this layer
(Figure 5). As expected, this step significantly improves the reconstruction quality, particularly for
the lowest compression rates (high values of λ, hence heavily biased solutions).

To compare the effects of reconstruction chaining strategies, we compress a network with each set
of hyperparameters from a large grid for each chaining strategy, and plot only the test accuracy as a
function of the full network compress rate (higher and to the left is better).

12

Figure 6: Performances of reconstruction chaining strategies (LeNet-5 Caffe)

Surprisingly, the effect of reconstruction chaining strategies seems rather limited. This is particularly
unexpected for the top-down strategy, which we expected to perform much better, particularly on
the low compress rates, since it should be able to curb the effects of error accumulation. Several
interpretations are possible for this result. First, and most likely, LeNet-5 is only 4 layers deep, which
may not be enough to get a significant gain from limiting error accumulation. This experiment will
need to be performed on deeper networks to check this properly. Secondly, it is possible that since
the accumulation of error is only minimized on the training set, we do not see a significant enough
difference on the test set, i.e. the chaining only overfits the training set and does not really limit
reconstruction errors in the general case. We will need to measure the accuracy on the training set as
well to check whether this intuition is correct.

If further experiments confirm however that the different strategies have comparable performances,
then this means that there is no need to perform approximations in a serial manner, and we may
compress networks even faster by parallelizing the compression of layers, since they can be performed
independently and give similar results.

4 Conclusion

We presented an efficient pre-compression procedure that is able to reduce the memory footprint of a
network without significantly affecting its accuracy, in a way that remains composable with all other
network compression techniques. By focusing on the reconstruction of the linear activations of layers,
we were able to cast the network approximation problem to a series of convex problems that can be
solved efficiently. We have demonstrated that this method can be applied in parallel and requires little
use of the training data compared to the initial training process, enabling an even faster computation
of the approximated models. This makes it particularly well suited to use cases requiring a large
number of models of different sizes, where one can train only one model and then compress it many
times to each desired size in a reasonable amount of time, instead of having to fine-tune each of the
compressed models, as was required by previous inexpensive compression methods recovering from
accuracy drops rather than preserving the accuracy of the networks.

13

References
Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-

parameterization. arXiv preprint arXiv:1811.03962, 2018.

Jose M Alvarez and Mathieu Salzmann. Learning the number of neurons in deep networks. In
Advances in Neural Information Processing Systems, pages 2270–2278, 2016.

Francis R. Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozinski. Optimization with
sparsity-inducing penalties. CoRR, abs/1108.0775, 2011. URL http://arxiv.org/abs/1108.
0775.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

A Chambolle, Ch Dossal, et al. How to make sure the iterates of fista converge. 2014.

Misha Denil, Babak Shakibi, Laurent Dinh, Nando De Freitas, et al. Predicting parameters in deep
learning. In Advances in neural information processing systems, pages 2148–2156, 2013.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. In Advances in neural information
processing systems, pages 1269–1277, 2014.

Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks via layer-wise
optimal brain surgeon. In Advances in Neural Information Processing Systems, pages 4857–4867,
2017.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in neural information processing systems, pages 1135–1143,
2015b.

Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In Advances in neural information processing systems, pages 164–171, 1993.

Tianxing He, Yuchen Fan, Yanmin Qian, Tian Tan, and Kai Yu. Reshaping deep neural network for
fast decoding by node-pruning. In 2014 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 245–249. IEEE, 2014.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size.
arXiv preprint arXiv:1602.07360, 2016.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions. arXiv preprint arXiv:1405.3866, 2014.

Swayambhoo Jain and Jarvis Haupt. Convolutional approximations to linear dimensionality reduction
operators. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5885–5889. IEEE, 2017.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky.
Speeding-up convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553, 2014.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pages 598–605, 1990.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value
of network pruning. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=rJlnB3C5Ym.

14

http://arxiv.org/abs/1108.0775
http://arxiv.org/abs/1108.0775
https://openreview.net/forum?id=rJlnB3C5Ym

Zelda Mariet and Suvrit Sra. Diversity networks: Neural network compression using determinantal
point processes. arXiv preprint arXiv:1511.05077, 2015.

Simone Scardapane, Danilo Comminiello, Amir Hussain, and Aurelio Uncini. Group sparse regular-
ization for deep neural networks. Neurocomputing, 241:81–89, 2017.

Suraj Srinivas and R Venkatesh Babu. Data-free parameter pruning for deep neural networks. arXiv
preprint arXiv:1507.06149, 2015.

Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, et al. Convolutional neural networks with low-rank
regularization. arXiv preprint arXiv:1511.06067, 2015.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Advances in neural information processing systems, pages 2074–2082,
2016.

5 Appendix

5.1 Proof of optimal brain surgeon step

Recall that we use the approximation of L(w + δw) by

L(w + δw) = L(w) +∇L(w)T · δw +
1

2
δwT · ∇2L(w) · δw +O(‖δw‖3)

and assume∇L(w) = 0 since the network was trained. We wish to minimize L(w+ δw), under the
constraint δwTeq + wq = 0. We thus solve instead

min
δwT eq+wq=0

1

2
δwT · ∇2L(w) · δw

The gradient of the Lagrangian of this problem is cancelled when

∇2L(w) · δw + λeq = 0

which yields δw = −λ∇2L(w)−1eq , that we can inject into the Lagragian to get

sup
λ

1

2
(λ∇2L(w)−1eq)

T · ∇2L(w) · (λ∇2L(w)−1eq)− λ
(
(λ∇2L(w)−1eq)

Teq + wq
)

which rewrites to supλ− 1
2λ

2(∇2L(w)−1)q,q + λwq , attained in λ =
wq

(∇2L(w)−1)q,q
, hence

δw = − wq
(∇2L(w)−1)q,q

∇2L(w)−1eq L(w + δw)− L(w) =
1

2

w2
q

(∇2L(w)−1)q,q

5.2 Compressed Sparse Row sparse storage cost

Consider a matrix of size (n, n) with a non-zero coefficients. If a is small enough, the most efficient
way to encode the matrix would be as a dictionnary of keys, which for a matrix with f bits of
precision, will cost a · (2 log2(n) + f). This cost is only logarithmic in the size of the matrix, but
does not allow efficient matrix multiplication.

Therefore, a more popular format chosen to store sparse weight matrices recently has been Com-
pressed Sparse Row (CSR, or “Yale” format). It consists of, for each row, of the number of
non-zero elements in it, and a list of their indices, along with the value. This gives a storage cost of
a · (log2(n) + f) + n log2(n). That is to say n numbers, one for each row, plus a indices in total,
and a matrix values.

15

5.3 Proof of Lemma 1 (commutation of C and σ)

Let C ∈ Rm×n be a linear operator whose action commutes with the pointwise ReLU non-linearity
σ : x 7→ max(0, x). Without loss of generality, we can assume that C = cT with c ∈ Rn (i.e. C has
only one row), because the non-linearity is applied pointwise. The desired property is

∀w ∈ Rn, cTσ(w) = σ(cTw)

In particular for w = ek = (1(i = k))i (a vector of zeros with a one in position k),

ck = cTσ(w) = σ(cTw) = max(0, ck)

so ∀k, ck ≥ 0. Moreover, for w = ei − ej with i 6= j,

ci = cTσ(ei − ej) = σ(cT (ei − ej)) = max(0, ci − cj) ⇒ ci = 0 or cj = 0

Up to row rescaling (that can be interpreted as part of the reconstructor P) and elimination of trivial
rows containing only zeros, this implies that C is a feature selector.

5.4 Proof of Lemma 2 (convergence rate of FISTA)

The idea for this proof is borrowed from Chambolle et al. [2014].

Let L : M 7→ 1
2 · EX ‖WX −MX ‖22 + λ · ‖M‖2,1, and M∗ the global optimum of L.

Let g : M 7→ 1
2 · EX ‖WX −MX ‖22 = Tr((W −M)R (W −M)T)

and h : M 7→ λ · ‖M‖2,1, such that L = g + h

Define L = λmax(R) the spectral radius of the auto-correlation matrix. We choose a fixed step-size
γ ≤ 1

L and a non-negative sequence (tn)n of real numbers greater than 1 satisfying t2k+1− tk+1 ≤ t2k,
to define the iterates of FISTA:

Ak = Mk +
tk − 1

tk+1
· (Mk −Mk−1)

Mk+1 = proxγh (Ak − γ · ∇g(Ak))

By definition of the proximal operator, Mk+1 minimizes

U 7→ γ · h(U) +
1

2
‖Ak − γ · ∇g(Ak)−U‖2F

Expanding the square norm and removing the constant, this is equivalent to minimizing

U 7→ γ · h(U) + γ · 〈∇g(Ak),U−Ak〉+
1

2
‖Ak −U‖2F

Dividing by the positive step-size and adding a constant g(Ak),
this means that Mk+1 minimizes the 1

γ -strongly convex function

U 7→ h(U) + g(Ak) + 〈∇g(Ak),U−Ak〉+
1

2γ
‖Ak −U‖2F

Hence

∀U, h(Mk+1) + g(Ak) + 〈∇g(Ak),Mk+1 −Ak〉+
1

2γ
‖Ak −Mk+1‖2F +

1

2γ
‖U−Mk+1‖2F

≤ h(U) + g(Ak) + 〈∇g(Ak),U−Ak〉+
1

2γ
‖Ak −U‖2F

16

Using on the left g(y) ≤ g(x) + 〈∇g(x), y − x〉+ L
2 ‖y − x‖

2,
and on the right g(x) + 〈∇g(x), y − x〉 ≤ g(y) by convexity, we get

∀U, L(Mk+1) +
1

2γ
‖U−Mk+1‖2F ≤ L(U) +

1

2γ
‖Ak −U‖2F (7)

We will apply this result to U = (1− 1
tk+1

)Mk +
1

tk+1
M∗

For clarity, let us apply this separately to each occurence of U,
and write Vk+1 = Mk + tk+1(Mk+1 −Mk)

‖U−Mk+1‖2F =

∥∥∥∥(1− 1

tk+1
)Mk +

1

tk+1
M∗ −Mk+1

∥∥∥∥2
F

=

∥∥∥∥ 1

tk+1
M∗ − 1

tk+1
Vk+1

∥∥∥∥2
F

‖Ak −U‖2F =

∥∥∥∥Mk +
tk − 1

tk+1
(Mk −Mk−1)−U

∥∥∥∥2
F

=

∥∥∥∥ 1

tk+1
Vk −

1

tk+1
M∗
∥∥∥∥2
F

L(U) ≤ (1− 1

tk+1
)L(Mk) +

1

tk+1
L(M∗)

Equation 7 with this U thus gives

L(Mk+1)+
1

2γt2k+1

‖Vk+1 −M∗‖2F ≤ (1− 1

tk+1
)L(Mk)+

1

tk+1
L(M∗)+ 1

2γt2k+1

‖Vk −M∗‖2F

With δk = L(Mk)− L(M∗), this can be written

t2k+1 · δk+1 − (t2k+1 − tk+1) · δk ≤
1

2γ
‖Vk −M∗‖2F −

1

2γ
‖Vk+1 −M∗‖2F

Provided we have t2k+1 − tk+1 ≤ t2k, which is verified for tk = k+1
2 , and summing from 0 to k

t2k+1 · δk+1 ≤
1

2γ
‖V0 −M∗‖2F −

1

2γ
‖Vk+1 −M∗‖2F

And since V0 = M0, this proves the quadratic convergence of the FISTA iterates:

L(Mk)− L(M∗) ≤
L

2γt2k
‖M0 −M∗‖2F

5.5 Better initial points: Alternate minimization

We present here an alternative algorithm to solve the linear neural reconstruction problem. Although
it does not benefit from the guaranteed quadratic convergence that we have proved for FISTA, we
have found it very useful in practice since it converges very fast for relatively small values of d, which
are common in recent convolutional architectures. The cost of each iteration is O(d3 + hd2), which
can be more expensive than FISTA’s O(hd2), but not a problem in practice since d is generally less
than a thousand, and the whole algorithm is very easy to implement.

Recall that we wish to solve

min
M

1

2
Tr
(
(W −M)R(W −M)T

)
+ λ · ‖M‖2,1

17

We can use the variational formulation of the `1 norm

∀w ∈ R, |w| = min
η>0

w2

2η
+
η

2

to rewrite the penalty as a minimization problem

‖M‖2,1 =
∑
j

∣∣∣∣∣∣
√∑

i

M2
i,j

∣∣∣∣∣∣ = min
(ηj>0)j

∑
j

∑
iM

2
i,j

2ηj
+
ηj
2

and thus solve the following equivalent problem,

min
M, η>0

Tr
(
(W −M)R(W −M)T + λ ·MD(η−1)MT

)
+ λ · ηT1 (8)

By adding a smoothing term ε
∑
j η
−1
j with any ε > 0, we can then make the level sets with respect

to η compact on the positive quadrant, ensuring that alternate minimization algorithms are convergent
[Bach et al., 2011]. Because it is strictly convex, this problem can then be solved to global optimum by
alternate minimization. The optimum with respect to η is given in closed form by η2j =

∑
iM

2
i,j + ε,

and the optimum with respect to M is obtained by canceling the gradient in M, i.e. solving the linear
system (R+ λ ·D(η−1))MT = 2RWT .

The explicit algorithm to solve the linear neural reconstruction problem in the general case is
reproduced here for convenience. It is assumed that the h inputs are divided evenly into g groups of s
elements for simplicity, such that (Xsj+k,i)k<s constitutes the j-th group of the i-th input.

Algorithm 3 Alternate minimization for linear neural reconstruction
input: X ∈ Rh×N : input to the layer

Y ∈ Ro×N : output to reconstruct
g ∈ N : number of input groups

output: M ∈ Ro×h : reconstruction
R← XXT /N, B← 2XYT /N, M← 0 ∈ Ro×h, s← h/g
repeat

ηsj+k ←
√∑

i,uM
2
i,sj+u + ε, ∀j < g, ∀k < s

M← solve(R+ λ ·D(η−1), B)T

until desired convergence

18

	Context
	Neural network overparameterization
	A note on retraining
	Connection pruning
	Low-rank approximations
	Neuron removal
	Activation reconstruction

	Contribution
	Single layer approximation idea
	Leveraging consecutive layers
	Comparison with low-rank
	Solving the linear reconstruction problem
	Extension to convolutional layers
	Extension to residual layers
	Chaining reconstructions

	Experiments
	Fair evaluation of linear reconstruction
	General results
	Reconstruction chaining and debiasing

	Conclusion
	Appendix
	Proof of optimal brain surgeon step
	Compressed Sparse Row sparse storage cost
	Proof of Lemma 1 (commutation of C and)
	Proof of Lemma 2 (convergence rate of FISTA)
	Better initial points: Alternate minimization

