David A. R. ROBIN

\$\partial +33 \ 7 \ 78 \ 21 \ 59 \ 51
 ✓ david.a.r.robin@gmail.com
 ✓ www.robindar.com

PhD in Mathematics from INRIA / ENS Paris

Education

- 2021 2025 **PhD in Mathematics**, *INRIA / École Normale Supérieure*, Paris, Advised by Marc Lelarge & Kevin Scaman.

 Construction and convergence of provably-correct neural networks.
- 2020 2021 **Diplôme de l'ENS (Info Maths)**, École Normale Supérieure, Paris. Additional advanced courses on stochastic processes and algebraic geometry.
- 2018 2020 M. Sc. Computer Science (MVA), ENS Paris & ENS Paris-Saclay / Cachan.

 Relevant coursework includes: Category theory, Parallel programming, Computer vision,
 Convex optimization, Statistical learning, Differential geometry, Reinforcement learning,
 Natural language processing, Optimal Transport.
- 2017 2018 **B. Sc. Computer Science**, École Normale Supérieure, Paris.

 Relevant coursework includes: Randomized data structures and algorithms, Formal languages, Compilation, Algebra, Mathematical Logic, Semantics and Verification, Operating Systems, Information Theory, Cryptography, Databases.
- 2015 2017 **CPGE MP***, *Lycée Louis-le-Grand*, Paris.

 Two-year post-secondary program in advanced maths and physics.

Publications (Machine Learning)

- Dec 2025 Noise-Adaptivity in Smooth Optimization with Stability Ratios,
- NeurIPS San Diego (CA), Neural Information Processing Systems 2025.

 Constructed an algorithm adaptive to noise levels in stochastic gradient descent by automatically computing a scheduler to shrink the step-size along the trajectory. Proved adaptivity and rates matching nearly all best rates of SGD with noise-tuned schedulers.
- May 2024 Random Sparse Lifts: convergence of finite sparse networks, Vienna, ICLR International Conference on Learning Representations 2024.

Proved convergence of multi-layer networks to arbitrarily low loss values by gradient flow, for large families of MLP and derivative architectures at initialization. Showed that probable-approximate-correctness is a type of structural guarantee that is achievable for large neural networks of essentially arbitrary architectures.

- Nov 2022 Convergence beyond the over-parameterized regime with Rayleigh quotients, New Orleans (LA), Neural Information Processing Systems 2022.

 Presented a proof that two-layer networks trained by gradient flow are probably approximately correct, without over-parameterization assumptions, extending to cases with infinite data, by leveraging a structural inequality (Separable Kurdyka-Łojasiewicz).
- Nov 2022 Periodic Signal Recovery with Regularized Sine-Networks, New Orleans NeurIPS (LA), NeurReps workshop at NeurIPS 2022.

Showed failure of neural networks to learned periodic functions, identified obstructions, and presented a more diverse initialization and non-convex regularization enabling sinusoidal two-layer networks to perfectly recover a periodic signal far outside the training interval.

Publications (Cybersecurity)

- Jun 2025 Attacking and Fixing the Android Protected Confirmation Protocol,
- Euro S&P Venice, IEEE European Symposium on Security and Privacy 2025.

 Identified two vulnerabilities in Android's Trusted Execution Environment (TEE) registration and user validation protocols leading to a bypass of user consent. Demonstrated attacks on Google's Pixel, and proved that a fixed protocol does achieve the intended APC trusted user-consent guarantees in the Universal Composability (UC) framework.
- Oct 2020 Return-oriented programming on RISC-V, Taipei Taiwan,
- Asia CCS ACM Asia Conference on Computer and Communications Security 2020.

 Demonstrated a vulnerability in prefix-code machine instructions exploited by crafting sequences of long (32-bit) instructions whose last 16 bits are either a valid instruction or a valid prefix that can be chained into an overlapping sequence of instructions fooling current ROP gadget detectors, with a corresponding tree-based detection method.

Experience

- Apr Oct Quantitative Researcher, Qube Research & Technology (QRT), Paris.
 - 2024 Developed automated derivatives-trading algorithms exploiting statistical arbitrages.
- Oct 2020 Research Internship, Laboratoire de Mathématiques LMO, Orsay.
- Jun 2021 Research internship with Lénaïc Chizat (CNRS) on the implicit bias of gradient descent on two-layer neural networks. Characterized the limit point as the Bregman projection for hyperbolic-entropy of initialization to the zero-loss set with linear convergence speed.
- Feb Aug Research Internship, Upstride SAS, Station F Paris.
 - 2020 Research internship with Wilder Lopes exploring computational efficiency of variational auto-encoders defined over Clifford algebras. Demonstrated experimentally superior reconstruction performance of models leveraging higher-dimensional algebras on images.
- Feb Aug Research Internship, Technicolor AI Research, San Francisco (CA).
 - 2019 Research Internship with Swayambhoo Jain on compression of neural networks, by iterative reconstruction of activations, re-cast as a sequence of convex problems.
- Jun Aug Research Internship, Massachussets Institute of Technology, Boston (MA).
 - 2018 Summer internship with Philippe Rigollet (MIT) on reconstruction of cellular trajectories in gene expression space, between single-cell RNA sequencings of populations of cells at various stages of development, through optimal transport methods.