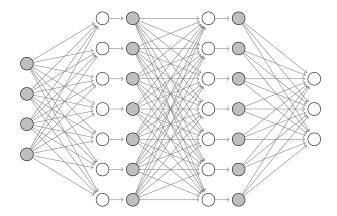
Neural Network Compression Linear Neural Reconstruction

David A. R. Robin

Nov 29, 2019

Neural networks

 $X \in \mathbb{R}^d \mapsto W_2 \cdot \sigma_1(W_1 \cdot \sigma_0(W_0 \cdot X))$



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Notations

$w \in \mathbb{R}^n$: weights of a full neural network			
$\mathcal{L}:\mathbb{R}^n o \mathbb{R}$: loss function			
\odot : $(x, y) \mapsto (x_i y_i)_i$: pointwise product			
$\mathbb{1}_A: x \mapsto \mathbb{1}(x \in A)$: set indicator function			
$d \in \mathbb{N}$: number of inputs of a layer			
$h\in\mathbb{N}$: number of outputs of a layer			

 $W \in \mathbb{R}^{h imes d}$ $\mathcal{D} \quad (\text{over } \mathbb{R}^d)$ $X \sim \mathcal{D}$

- : weights of a single layer
- : distribution of inputs to a layer
- : input to a layer (random variable)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Previously in Network Compression

Too many weights. Which one would you remove ?

$$\mathcal{L}(w+\delta w) - \mathcal{L}(w) = \nabla \mathcal{L}(w)^T \cdot \delta w + \frac{1}{2} \delta w^T \cdot \nabla^2 \mathcal{L}(w) \cdot \delta w + \mathcal{O}(\|\delta w\|^3)$$

Cost of pruning a single weight : $\Delta \mathcal{L}(w_q \cdot e_q) \approx \frac{1}{2} w_q^2 \cdot (\nabla^2 \mathcal{L})_{qq}$

Too many weights. Which one would you remove ?

$$\mathcal{L}(w+\delta w) - \mathcal{L}(w) = \nabla \mathcal{L}(w)^T \cdot \delta w + \frac{1}{2} \delta w^T \cdot \nabla^2 \mathcal{L}(w) \cdot \delta w + \mathcal{O}(\|\delta w\|^3)$$

Cost of pruning a single weight : $\Delta \mathcal{L}(w_q \cdot e_q) \approx \frac{1}{2} w_q^2 \cdot (\nabla^2 \mathcal{L})_{qq}$

Too many weights. Which one would you remove ?

$$\mathcal{L}(w+\delta w) - \mathcal{L}(w) = \nabla \mathcal{L}(w)^T \cdot \delta w + \frac{1}{2} \delta w^T \cdot \nabla^2 \mathcal{L}(w) \cdot \delta w + \mathcal{O}(\|\delta w\|^3)$$

Cost of pruning a single weight : $\Delta \mathcal{L}(w_q \cdot e_q) \approx \frac{1}{2} w_q^2 \cdot (\nabla^2 \mathcal{L})_{qq}$

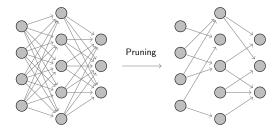
Too many weights. Which one would you remove ?

$$\mathcal{L}(w+\delta w) - \mathcal{L}(w) = \nabla \mathcal{L}(w)^T \cdot \delta w + \frac{1}{2} \delta w^T \cdot \nabla^2 \mathcal{L}(w) \cdot \delta w + \mathcal{O}(\|\delta w\|^3)$$

Cost of pruning a single weight : $\Delta \mathcal{L}(w_q \cdot e_q) \approx \frac{1}{2} w_q^2 \cdot (\nabla^2 \mathcal{L})_{qq}$

Pruning : Remove weights (i.e. connections)

Assumption : small magnitude $|w_q|$ pruned \rightarrow small loss increase (even when pruning several weights at once)

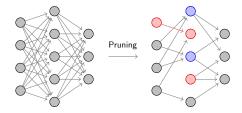


Algorithm : Prune, Retrain, Repeat

Result : 90% of weights removed, same accuracy (high compressibility)

Previously in Network Compression : Explaining Pruning

Magnitude-based pruning requires retraining.



Neurons with no inputs or no outputs (in red) can be kept¹, as well as redundant neurons (in blue) that could be discarded at no cost.

Redundancy is not leveraged

Can we take advantage of redundancies ?

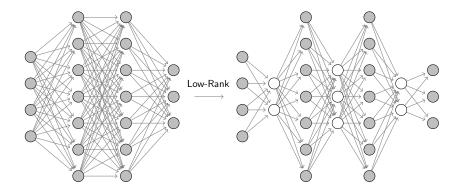
¹given enough retraining with weight decay, these will be discarded a solution of the second decay.

Previously in Network Compression : Low-rank

$$\min_{P \in \mathbb{R}^{h \times r}, Q \in \mathbb{R}^{d \times r}} \left\| W - PQ^T \right\|_2$$

...

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ



Problems : keeps hidden neuron count intact, data-agnostic

Contribution

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Activation reconstruction

L-layer feed-forward flow:

- \blacktriangleright Z_0 input to the network
- $\triangleright \ Z_{k+1} = \sigma_k (W_k \cdot Z_k)$
- Use Z_L as prediction

Weight approximation (theirs): $\hat{W}_k \approx W_k$

Activation reconstruction *(ours)*: $\hat{Z}_k \approx Z_k$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We have more than weights, we have activations We only need $\sigma_k(\hat{W}_k Z_k) \approx \sigma_k(W_k Z_k)$

 $\hat{Z}_k \approx Z_k , \, \sigma_k(\hat{W}_k Z_k) \approx \sigma_k(W_k Z_k) \quad \Rightarrow \quad \hat{Z}_{k+1} \approx Z_{k+1}$

 $\sigma_k(\hat{W}_k Z_k) \approx \sigma_k(W_k Z_k) \quad \Rightarrow \quad \hat{W}_k \approx W_k$

Linear activation reconstruction

$$\hat{W}_k \approx W_k \implies \hat{W}_k Z_k \approx W_k Z_k \implies \sigma_k(\hat{W}_k Z_k) \approx \sigma_k(W_k Z_k)$$

The first $(\hat{W}_k \approx W_k)$ is sub-optimal because data-agnostic
The third $(\sigma_k(\hat{W}_k Z_k) \approx \sigma_k(W_k Z_k))$ is non-convex, non-smooth
Let's try to get $\hat{W}_k \cdot Z_k \approx W_k \cdot Z_k$

Low-rank inspiration

Low-rank with activation reconstruction gives

$$\min_{P \in \mathbb{R}^{h \times r}, Q \in \mathbb{R}^{n \times r}} \mathbb{E}_{X} \left\| WX - PQ^{T}X \right\|_{2}^{2}$$

Q : feature extractor,

P : linear reconstruction from extracted features

Knowing the right rank r to use is hard. Soft low-rank would use the nuclear norm $\|\cdot\|_*$ instead

$$\min_{M} \mathbb{E}_{X} \| WX - MX \|_{2}^{2} + \lambda \cdot \|M\|_{*}$$

where λ controls the tradeoff between compression and accuracy

 $C_i(M) = 0 \Rightarrow X_i$ is never used \Rightarrow we can remove neuron n°i

Column-sparse matrices remove neurons.

Caracterization of such matrices reminiscent of low-rank : PC^{T}

Low-Rank : $M = PQ^T$ Column-sparse : $M = PC^T$ \triangleright $P \in \mathbb{R}^{h \times r_Q}$ \triangleright $P \in \mathbb{R}^{h \times r_C}$ \triangleright $Q \in \mathbb{R}^{d \times r_Q}$ \triangleright $C \in \{0, 1\}^{d \times r_C}, C^T 1_d = 1_r$

Q the feature extractor becomes a feature selector C

Leveraging consecutive layers

Restricting to feature selectors, we gain an interesting property

feature selector's action commute with non-linearities

For a three-layer network:

$$\begin{array}{rcl} & \mathcal{W}_3 \cdot \sigma_2(& \mathcal{W}_2 \cdot \sigma_1(& \mathcal{W}_1 \cdot X &)) \\ \approx & \mathcal{P}_3 \mathcal{C}_3^T \cdot \sigma_2(& \mathcal{P}_2 \mathcal{C}_2^T \cdot \sigma_1(& \mathcal{P}_1 \mathcal{C}_1^T \cdot X &)) \\ = & \mathcal{P}_3 \cdot \sigma_2(& \mathcal{C}_3^T \mathcal{P}_2 \cdot \sigma_1(& \mathcal{C}_2^T \mathcal{P}_1 \cdot \mathcal{C}_1^T X &)) \\ = & \hat{\mathcal{W}}_3 \cdot \sigma_2(& \hat{\mathcal{W}}_2 \cdot \sigma_1(& \hat{\mathcal{W}}_1 \cdot \mathcal{C}_1^T X &)) \end{array}$$

Memory footprint:

• original : $h_3 \times h_2 + h_2 \times h_1 + h_1 \times d$

• compressed : $h_3 \times r_3 + r_3 \times r_2 + r_2 \times r_1 + \alpha \cdot \log_2 {d \choose r_1}$

 h_2 and h_1 are gone ! Only h_3 (#outputs) and d (#inputs) remain

Optimality of feature selectors

feature selector's action commute with non-linearities:

$$C \in \{0,1\}^{r \times d}, \ C^T \mathbf{1}_d = \mathbf{1}_r \quad \Rightarrow \quad PC^T \cdot \sigma(U) = P \cdot \sigma(C^T U)$$

We only need the commutation property.

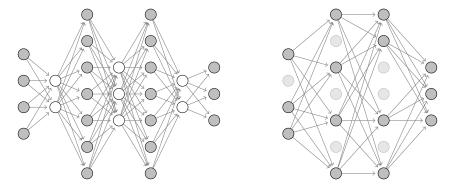
Can we maybe use something less extreme than feature selectors ?

Lemma (commutation lemma) Let C be a linear operator Let $\sigma : x \mapsto \max(0, x)$ be the pointwise ReLU C's action commutes with $\sigma \Rightarrow C$ is a feature selector

Answer : No, not even if all σ_k are ReLU

Comparison with low-rank

Hidden neurons are deleted



Note how this doesn't suffer pruning drawbacks discussed before

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Comparison with low-rank

Low-Rank :
$$M = PQ^T$$
Column-sparse : $M = PC^T$ \triangleright $P \in \mathbb{R}^{h \times r_Q}$ \triangleright $P \in \mathbb{R}^{h \times r_C}$ \triangleright $Q \in \mathbb{R}^{d \times r_Q}$ \triangleright $C \in \{0,1\}^{d \times r_C}, C^T 1_d = 1_r$

For the same ℓ_2 error, low-rank is less constrained, hence $r_Q \leq r_C$ But it doesn't remove hidden neurons, which may dominate its cost

Two regimes:

- Heavy overparameterization $(r_C \ll d)$: use column-sparse
- Light overparameterization $(r_C \approx d)$: use low-rank

Once neurons have been removed, it is still possible to apply low-rank approximation on top of the first compression

Solving for column-sparse

Linear Neural Reconstruction Problem

Using the $\ell_{2,1}$ norm as a proxy for the number of non-zero columns, we can consider the following distinct relaxation

$$\min_{M} \mathbb{E}_{X} \| WX - MX \|_{2}^{2} + \lambda \cdot \| M \|_{2,1}$$
(1)
where $\| M \|_{2,1} = \sum_{j} \sqrt{\sum_{i} M_{i,j}^{2}}$ is the $\ell_{2,1}$ norm of M ,

i.e. the sum of the ℓ_2 -norms of its columns.

The sum over the training set can be factored away Using A = W - M, we have

$$\mathbb{E}_{X} \| AX \|_{2}^{2} = \mathbb{E}_{X} \operatorname{Tr} \left(A \cdot XX^{T} \cdot A^{T} \right) = \operatorname{Tr} \left(A \cdot (\mathbb{E}_{X}XX^{T}) \cdot A^{T} \right)$$

 $R = \mathbb{E}_X[XX^T] \in \mathbb{R}^{d \times d}$ is the auto-correlation matrix. The objective can then be evaluated in $\mathcal{O}(hd^2)$, which does not depend on the number of samples.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Efficient solving

Our problem is strictly convex \rightarrow solvable to global optimum

We solve it with Fast Iterative Shrinkage-Thresholding, an accelerated proximal gradient method (quadratic convergence).

Lemma (quadratic convergence) Let $\mathcal{L} : M \mapsto \frac{1}{2} \cdot \mathbb{E}_X || WX - MX ||_2^2 + \lambda \cdot ||M||_{2,1},$ $(M_k)_k$ the iterates obtained by the FISTA algorithm, M^* the global optimum, and $L = \lambda_{\max}(\mathbb{E}_X[XX^T])$. Then

$$\mathcal{L}(M_k) - \mathcal{L}(M^*) \le \frac{2L}{k^2} \|M_0 - M^*\|_F^2$$

Extension to convolutional layers

For each output position (u, v) in output channel j, we write $X_i^{(u,v)}$ the associated input, that will be multiplied by W_i to get $(W * X_i)_{i,u,v}$

$$\|W * X_i\|_2^2 = \sum_j \sum_{u,v} \|W_j \odot X_i^{(u,v)}\|_2^2$$

hence

$$R \propto \sum_i \sum_{u,v} \operatorname{vec}(X_i^{(u,v)}) \cdot \operatorname{vec}(X_i^{(u,v)})^T$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This rewriting holds for any stride, padding or dilation values

Then use more general Group-Lasso instead of $\ell_{2,1}$

Lasso regularization \rightarrow shrinkage effect \rightarrow bias in the solution

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

We limit this effect by solving twice

- Solve for (P, C^T) and retain only C
- ▶ Solve for *P* with fixed *C* without penalty

The second is just a linear regression

Influence of debiasing

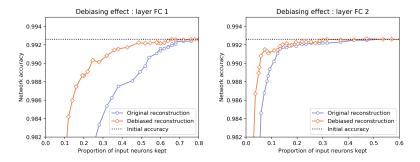


Figure: Influence of debiasing on reconstruction quality (LeNet-5 Caffe)

Results

General results

Network		Error		Comp. rate	Size
Architecture	Туре	Top-1	Top-5	comp. rate	0.20
LeNet-300-100	Baseline	1.68 %	-	-	1.02 MiB
	Compressed	1.71 %	-	46 %	482 KiB
	Retrained (1)	1.64 %	-	29 %	307 KiB
LeNet-5 (Caffe)	Baseline	0.74 %	-	-	1.64 MiB
	Compressed	0.78 %	-	16 %	276 KiB
	Retrained (1)	0.78 %	-	10 %	177 KiB
AlexNet	Baseline	43.48 %	20.93 %	-	234 MiB
	Compressed	45.36 %	21.90 %	39 %	91 MiB

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Reconstruction chaining

We can extend the previous problem to reconstruct arbitrary output \boldsymbol{Y}

$$\min_{M} \frac{1}{2N} \sum_{i} \|Y_{i} - MX_{i}\|_{2}^{2} + \lambda \cdot \|M\|_{2,1}$$
(2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

FISTA is adapted by simply changing the gradient step $dA = YX^T - AXX^T$, where YX^T can be precomputed as well

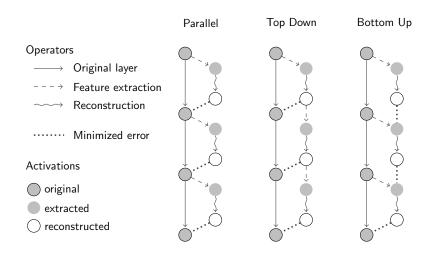
Consider a feed-forward fully connected network Input Z_0 , weights $(W_k)_k$ and non-linearities $(\sigma_k)_k$

$$Z_{k+1} = \sigma_k (W_k \cdot Z_k)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Parallel : Y = W_k · Z_k , X = Z_k
 Top-down : Y = W_k · Z_k , X = Â_k
- Bottom-up : $Y = C_{k+1}^T W_k \cdot Z_k$, $X = Z_k$

Three chaining strategies



Reconstruction chaining

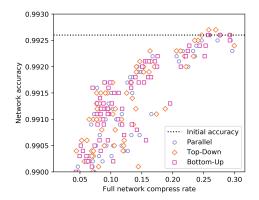


Figure: Performances of reconstruction chainings (LeNet-5 Caffe)

イロト イポト イヨト イヨト

Practical Session

www.robindar.com/teaching/lnr_practical_session.ipynb

Appendix

Fast Iterative Shrinkage-Thresholding

Algorithm 1 FISTA with fixed step size

input: $X \in \mathbb{R}^{h \times N}$: input to the layer, $W \in \mathbb{R}^{o \times h}$: weight to approximate. λ : hyperparameter **output:** $M \in \mathbb{R}^{o \times h}$: reconstruction $R \leftarrow XX^T/N$ $L \leftarrow$ largest eigenvalue of R $M \leftarrow 0 \in \mathbb{R}^{o \times h}$. $P \leftarrow 0 \in \mathbb{R}^{o \times h}$ $t \leftarrow \lambda / L, \ k \leftarrow 1, \ \theta \leftarrow 1$ repeat $\theta \leftarrow (k-1)/(k+2), \ k \leftarrow k+1$ $A \leftarrow M + \theta (M - P)$ $dA \leftarrow (W - A)R$ $P \leftarrow M, M \leftarrow prox_{t \parallel \cdot \parallel_{2,1}} (A - dA/L)$ until desired convergence

Convergence guarantees

Lemma

Let $\mathcal{L} : M \mapsto \frac{1}{2} \cdot \mathbb{E}_X || WX - MX ||_2^2 + \lambda \cdot ||M||_{2,1}$, $(M_k)_k$ the iterates obtained by FISTA as described above, M^* the global optimum, and $L = \lambda_{\max}(\mathbb{E}_X[XX^T])$. Then

$$\mathcal{L}(M_k) - \mathcal{L}(M^*) \, \leq \, rac{2L}{k^2} \left\| M_0 - M^*
ight\|_F^2$$

Choosing $M_0 = 0$, we can refine this bound with the following

$$\|M^*\|_F^2 \leq \|M^*\|_{2,1} \cdot \min\left(\sqrt{d}, \|M^*\|_{2,1}\right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

and by definition of M^* , we have $\forall M, \|M^*\|_{2,1} \leq \frac{1}{\lambda}\mathcal{L}(M)$