
Neural Network Compression
Linear Neural Reconstruction

David A. R. Robin

Nov 29, 2019

Neural networks

X ∈ Rd 7→W2 · σ1(W1 · σ0(W0 · X))

Notations

w ∈ Rn : weights of a full neural network

L : Rn → R : loss function

� : (x , y) 7→ (xiyi)i : pointwise product

1A : x 7→ 1(x ∈ A) : set indicator function

d ∈ N : number of inputs of a layer

h ∈ N : number of outputs of a layer

W ∈ Rh×d : weights of a single layer

D (over Rd) : distribution of inputs to a layer

X ∼ D : input to a layer (random variable)

Previously in Network Compression

Previously in Network Compression : Pruning

Too many weights. Which one would you remove ?

L(w+δw)−L(w) =
0
∇L(w)T ·δw+

1

2
δwT ·∇2L(w)·δw+O(‖δw‖3)

Cost of pruning a single weight : ∆L(wq · eq) ≈ 1

2
w2
q · (∇2L)qq

Previously in Network Compression : Pruning

Too many weights. Which one would you remove ?

L(w+δw)−L(w) =
0
∇L(w)T ·δw+

1

2
δwT ·∇2L(w)·δw+O(‖δw‖3)

Cost of pruning a single weight : ∆L(wq · eq) ≈ 1

2
w2
q · (∇2L)qq

Previously in Network Compression : Pruning

Too many weights. Which one would you remove ?

L(w+δw)−L(w) =
0
∇L(w)T ·δw+

1

2
δwT ·∇2L(w)·δw+O(‖δw‖3)

Cost of pruning a single weight : ∆L(wq · eq) ≈ 1

2
w2
q · (∇2L)qq

Previously in Network Compression : Pruning

Too many weights. Which one would you remove ?

L(w+δw)−L(w) =
0
∇L(w)T ·δw+

1

2
δwT ·∇2L(w)·δw+O(‖δw‖3)

Cost of pruning a single weight : ∆L(wq · eq) ≈ 1

2
w2
q · (∇2L)qq

Previously in Network Compression : Pruning

Pruning : Remove weights (i.e. connections)

Assumption : small magnitude |wq| pruned → small loss increase
(even when pruning several weights at once)

Pruning

Algorithm : Prune, Retrain, Repeat

Result : 90% of weights removed, same accuracy (high compressibility)

Previously in Network Compression : Explaining Pruning

Magnitude-based pruning requires retraining.

Pruning

Neurons with no inputs or no outputs (in red) can be kept1, as well
as redundant neurons (in blue) that could be discarded at no cost.

Redundancy is not leveraged

Can we take advantage of redundancies ?

1given enough retraining with weight decay, these will be discarded

Previously in Network Compression : Low-rank

min
P∈Rh×r ,Q∈Rd×r

∥∥∥W − PQT
∥∥∥
2

Low-Rank

Problems : keeps hidden neuron count intact, data-agnostic

Contribution

Activation reconstruction

L-layer feed-forward flow:

I Z0 input to the network

I Zk+1 = σk(Wk · Zk)

I Use ZL as prediction

Weight approximation (theirs):

I Ŵk ≈Wk

Activation reconstruction (ours):

I Ẑk ≈ Zk

We have more than weights, we have activations

We only need σk(ŴkZk) ≈ σk(WkZk)

Ẑk ≈ Zk , σk(ŴkZk) ≈ σk(WkZk) ⇒ Ẑk+1 ≈ Zk+1

σk(ŴkZk) ≈ σk(WkZk) ; Ŵk ≈Wk

Linear activation reconstruction

Ŵk ≈Wk ⇒ ŴkZk ≈WkZk ⇒ σk(ŴkZk) ≈ σk(WkZk)

The first (Ŵk ≈Wk) is sub-optimal because data-agnostic

The third (σk(ŴkZk) ≈ σk(WkZk)) is non-convex, non-smooth

Let’s try to get Ŵk · Zk ≈Wk · Zk

Low-rank inspiration

Low-rank with activation reconstruction gives

min
P∈Rh×r ,Q∈Rn×r

EX

∥∥∥WX − PQTX
∥∥∥2
2

Q : feature extractor,
P : linear reconstruction from extracted features

Knowing the right rank r to use is hard.
Soft low-rank would use the nuclear norm ‖ · ‖∗ instead

min
M

EX ‖WX −MX ‖22 + λ · ‖M‖∗

where λ controls the tradeoff between compression and accuracy

Neuron removal

Ci (M) = 0 ⇒ Xi is never used ⇒ we can remove neuron noi

Column-sparse matrices remove neurons.

Caracterization of such matrices reminiscent of low-rank : PCT

Low-Rank : M = PQT

I P ∈ Rh×rQ

I Q ∈ Rd×rQ

Column-sparse : M = PCT

I P ∈ Rh×rC

I C ∈ {0, 1}d×rC , CT1d = 1r

Q the feature extractor becomes a feature selector C

Leveraging consecutive layers

Restricting to feature selectors, we gain an interesting property

feature selector ’s action commute with non-linearities

For a three-layer network:

W3 · σ2(W2 · σ1(W1 · X))

≈ P3C
T
3 · σ2(P2C

T
2 · σ1(P1C

T
1 · X))

= P3 · σ2(CT
3 P2 · σ1(CT

2 P1 · CT
1 X))

= Ŵ3 · σ2(Ŵ2 · σ1(Ŵ1 · CT
1 X))

Memory footprint:

I original : h3 × h2 + h2 × h1 + h1 × d

I compressed : h3 × r3 + r3 × r2 + r2 × r1 + α · log2
(d
r1

)
h2 and h1 are gone ! Only h3 (#outputs) and d (#inputs) remain

Optimality of feature selectors

feature selector ’s action commute with non-linearities:

C ∈ {0, 1}r×d , CT1d = 1r ⇒ PCT · σ(U) = P · σ(CTU)

We only need the commutation property.
Can we maybe use something less extreme than feature selectors ?

Lemma (commutation lemma)

Let C be a linear operator
Let σ : x 7→ max(0, x) be the pointwise ReLU
C ’s action commutes with σ ⇒ C is a feature selector

Answer : No, not even if all σk are ReLU

Comparison with low-rank

Hidden neurons are deleted

Note how this doesn’t suffer pruning drawbacks discussed before

Comparison with low-rank

Low-Rank : M = PQT

I P ∈ Rh×rQ

I Q ∈ Rd×rQ

Column-sparse : M = PCT

I P ∈ Rh×rC

I C ∈ {0, 1}d×rC , CT1d = 1r

For the same `2 error, low-rank is less constrained, hence rQ ≤ rC
But it doesn’t remove hidden neurons, which may dominate its cost

Two regimes:

I Heavy overparameterization (rC � d) : use column-sparse

I Light overparameterization (rC ≈ d) : use low-rank

Once neurons have been removed, it is still possible to apply
low-rank approximation on top of the first compression

Solving for column-sparse

Linear Neural Reconstruction Problem

Using the `2,1 norm as a proxy for the number of non-zero
columns, we can consider the following distinct relaxation

min
M

EX ‖WX −MX ‖22 + λ · ‖M‖2,1 (1)

where ‖M‖2,1 =
∑

j

√∑
i M

2
i ,j is the `2,1 norm of M,

i.e. the sum of the `2-norms of its columns.

Auto-correlation factorization

The sum over the training set can be factored away
Using A = W −M, we have

EX ‖AX ‖22 = EX Tr
(
A · XXT · AT

)
= Tr

(
A · (EXXX

T) · AT
)

R = EX [XXT] ∈ Rd×d is the auto-correlation matrix.
The objective can then be evaluated in O(hd2), which does not
depend on the number of samples.

Efficient solving

Our problem is strictly convex → solvable to global optimum

We solve it with Fast Iterative Shrinkage-Thresholding,
an accelerated proximal gradient method (quadratic convergence).

Lemma (quadratic convergence)

Let L : M 7→ 1
2 · EX ‖WX −MX ‖22 + λ · ‖M‖2,1,

(Mk)k the iterates obtained by the FISTA algorithm,
M∗ the global optimum, and L = λmax(EX [XXT]). Then

L(Mk)− L(M∗) ≤ 2L

k2
‖M0 −M∗‖2F

Extension to convolutional layers

For each output position (u, v) in output channel j ,

we write X
(u,v)
i the associated input,

that will be multiplied by Wj to get (W ∗ Xi)j ,u,v

‖W ∗ Xi‖22 =
∑
j

∑
u,v

∥∥∥Wj � X
(u,v)
i

∥∥∥2
2

hence
R ∝

∑
i

∑
u,v

vec(X
(u,v)
i) · vec(X

(u,v)
i)T

This rewriting holds for any stride, padding or dilation values

Then use more general Group-Lasso instead of `2,1

Tackling Lasso bias

Lasso regularization → shrinkage effect → bias in the solution

We limit this effect by solving twice

I Solve for (P,CT) and retain only C

I Solve for P with fixed C without penalty

The second is just a linear regression

Influence of debiasing

Figure: Influence of debiasing on reconstruction quality (LeNet-5 Caffe)

Results

General results

Network Error
Comp. rate Size

Architecture Type Top-1 Top-5

LeNet-300-100
Baseline 1.68 % - - 1.02 MiB
Compressed 1.71 % - 46 % 482 KiB
Retrained (1) 1.64 % - 29 % 307 KiB

LeNet-5 (Caffe)
Baseline 0.74 % - - 1.64 MiB
Compressed 0.78 % - 16 % 276 KiB
Retrained (1) 0.78 % - 10 % 177 KiB

AlexNet
Baseline 43.48 % 20.93 % - 234 MiB
Compressed 45.36 % 21.90 % 39 % 91 MiB

Reconstruction chaining

Extension to arbitrary output

We can extend the previous problem to reconstruct arbitrary
output Y

min
M

1

2N

∑
i

‖Yi −MXi ‖22 + λ · ‖M‖2,1 (2)

FISTA is adapted by simply changing the gradient step
dA = YXT − AXXT , where YXT can be precomputed as well

Three chaining strategies

Consider a feed-forward fully connected network
Input Z0, weights (Wk)k and non-linearities (σk)k

Zk+1 = σk(Wk · Zk)

I Parallel : Y = Wk · Zk , X = Zk

I Top-down : Y = Wk · Zk , X = Ẑk

I Bottom-up : Y = CT
k+1Wk · Zk , X = Zk

Three chaining strategies

Parallel Top Down Bottom Up

Original layer

Feature extraction

Reconstruction

Minimized error

Operators

original

extracted

reconstructed

Activations

Reconstruction chaining

Figure: Performances of reconstruction chainings (LeNet-5 Caffe)

Practical Session

www.robindar.com/teaching/lnr_practical_session.ipynb

www.robindar.com/teaching/lnr_practical_session.ipynb

Appendix

Fast Iterative Shrinkage-Thresholding

Algorithm 1 FISTA with fixed step size

input: X ∈ Rh×N : input to the layer,
W ∈ Ro×h : weight to approximate,
λ : hyperparameter

output: M ∈ Ro×h : reconstruction
R ← XXT/N
L← largest eigenvalue of R
M ← 0 ∈ Ro×h , P ← 0 ∈ Ro×h

t ← λ /L , k ← 1 , θ ← 1
repeat

θ ← (k − 1) /(k + 2) , k ← k + 1
A← M + θ (M − P)
dA← (W − A)R
P ← M, M ← proxt‖·‖2,1(A− dA/L)

until desired convergence

Convergence guarantees

Lemma
Let L : M 7→ 1

2 · EX ‖WX −MX ‖22 + λ · ‖M‖2,1,
(Mk)k the iterates obtained by FISTA as described above,
M∗ the global optimum, and L = λmax(EX [XXT]). Then

L(Mk)− L(M∗) ≤ 2L

k2
‖M0 −M∗‖2F

Choosing M0 = 0, we can refine this bound with the following

‖M∗‖2F ≤ ‖M
∗‖2,1 ·min

(√
d , ‖M∗‖2,1

)
and by definition of M∗, we have ∀M, ‖M∗‖2,1 ≤

1
λL(M)

